
GALOIS THEORY OF DIFFERENTIAL SCHEMES

BEHRANG NOOHI AND IVAN TOMAŠIĆ

Abstract. Since 1883, Picard-Vessiot theory had been developed as the Ga-

lois theory of differential field extensions associated to linear differential equa-

tions. Inspired by categorical Galois theory of Janelidze, and by using novel
methods of precategorical descent applied to algebraic-geometric situations,

we develop a Galois theory that applies to morphisms of differential schemes,

and vastly generalises the linear Picard-Vessiot theory, as well as the strongly
normal theory of Kolchin.
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1. Introduction

1.1. History. Clasically, a Picard-Vessiot extension (L, δL)/(K, δK) of differential
fields yields a linear algebraic group

G = GalPV(L/K)

over the common field of constants k = Const(L, δL) = Const(K, δK) such that
there is a Galois correspondence between the intermediate differential field exten-
sions and Zariski closed subgroups of G, and

G(k) ≃ Aut((L, δL)/(K, δK)),

as explained in 5.1.
The Picard-Vessiot ring is a (K, δK)-algebra

(A, δA)

with fraction field (L, δL), such that (X, δX) = Spec(A, δA) is a G-torsor over
(Y, δY ) = Spec(K, δK) in the sense that

(X, δX)×(Y,δY ) (X, δX) ≃ (X, δX)×(X0,0) (G, 0),

where we consider X0 = Spec(k) and G as differential schemes endowed with zero
derivations.

Janelidze realised that Picard-Vessiot theory fits into the framework of his cat-
egorical Galois theory through the adjunction

δ-Aff

Aff

S C⊣
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between the categories of affine differential schemes and affine schemes, where

S(Spec(R, δR)) = Spec(Const(R, δR)), C(Spec(R)) = Spec(R, 0).

He emphasised in
janelidze-pv
[17] and

janelidze-pv2
[18] that the key object, the morphism of relative Galois

descent, is in fact the torsor

f : (X, δX)→ (Y, δY ),

and not the extension of differential fields, and that the Picard-Vessiot Galois group
agrees with the categorical Galois group,

GalPV(L/K) ≃ Gal[f ] = S(X ×Y X),

as explained in 5.8.
During the visit of the second author to Tsukuba in 2023, Akira Masuoka asked

whether categorical Galois theory approach automatically recovers the classical
Picard-Vessiot Galois correspondence. To our surprise, we observed that Carboni-
Janelidze-Magid correspondence from

carboni
[10] in the affine context only establishes a

correspondence between split affine quotients of X over Y and effective subgroups
of G = Gal[f ], i.e., those closed subgroups H such that G/H is represented by an
affine scheme, see 5.10.

We realised that, contrary to the popular belief, Picard-Vessiot theory is not
an entirely affine affair, and that the categorical Picard-Vessiot theory must be
extended to the correspondence between the split quasi-projective fpqc quotients
of (X, δX) over (Y, δY ), and closed subgroups of G, and that the intermediate
differential fields from the classical correspondence appear as function fields of those
quasi-projective quotients. Yves André also noted the failure of the affine Picard-
Vessiot correspondence and fixed it in a different way by using solution algebras in
andre-sol
[2].

On the other hand, the Galois theory of a strongly normal differential field
extension (L, δL)/(K, δK) of Kolchin

kolchin-sn
[19] is known to give rise to a general algebraic

group G over k and a general differential scheme (X, δX) that acts as a torsor for
G through a relation analogous to the above,

byalnicki
[6],

buium
[9],

umemura
[31].

Michael Wibmer informed us of the idea of a number of researchers in differential
algebra, including Jerry Kovacic, to interpret the strongly normal theory using
categorical Galois theory, and this was independently posed as a desirable project
by Janelidze in

janelidze-pv2
[18]. The difficulty lies in the fact that, with no reasonable notion of

differential scheme, does the natural extension of the functor C above to a functor
between schemes and differential schemes

δ-Sch

Sch

C

admit a left adjoint, so the classical categorical Galois theory cannot be invoked.
We resolve the apparent conundrum by constructing a very partial left adjoint

using Bardavid’s idea of categorical scheme of leaves
bardavid
[3], and by using an indexed

version of categorical Galois theory from
borceux-janelidze
[8], eventually proving Theorem 7.2 that

simultaneously explains the quasi-projective aspect of Picard-Vessiot theory and
applies to strongly normal theory.



4 BEHRANG NOOHI AND IVAN TOMAŠIĆ

We proceed much further and develop a Galois theory of arbitrary differential
scheme morphisms, as explained below. We hope that our work fulfils some of the
wishes of Jerry Kovacic to bring the techniques of modern algebraic geometry to
differential Galois theory.

1.2. Differential algebraic geometry. In this paper, a differential scheme

(X, δX) = (X, (OX , δX))

is a scheme (X,OX) endowed with a derivation δX on its structure sheaf OX , i.e.,
with a vector field.

Given a scheme S, we define a category of S-differential schemes

δ-SchS

consisting of schemes over S endowed by S-derivations.
The spectrum of a differential ring has a natural structure of a differential scheme,

affording a right adjoint
Spec : δ-Rngop → δ-Sch

to the global sections functor. A differential scheme is affine, if it is isomorphic to
a spectrum of a differential ring, and the category of affine differential schemes is
anti-equivalent to the category of differential rings, i.e.,

δ-Aff ≃ δ-Rngop,
which is consistent with our discussion of affine differential schemes above.

A natural functor

C : Sch→ δ-Sch, (X,OX) 7→ (X, (OX , 0))

allows us to consider a scheme as a differential scheme with a trivial derivation/zero
vector field, but it does not have a left adjoint. Based on the ideas of Bardavid

bardavid
[3,

4.2], we define a categorical scheme of leaves

π0(X)

of a differential scheme (X, δX) to be the morphism

(X, δX)→ C(π0(X))

which is universal from (X, δX) to C. It exists only for rare differential schemes
(X, δX), but this construction provides a partial left adjoint π0 to C when it does.

1.3. Differential schemes as precategory actions and descent. We make a
key novel observation that S-differential schemes can be viewed as actions of an
internal precategory

D(S)
in Sch/S associated to infinitesimal augmentations of S that we can symbolically
write

S[ϵ0, ϵ1]/(ϵ
2
0, ϵ0ϵ1, ϵ

2
1) S[ϵ]/(ϵ2) S

i.e., that there is an equivalence of categories (4.5)

δ-SchS ≃ (Sch/S)
D(S).

It was previously known that differential schemes can be viewed as ‘actions of a
pointed set’ associated to the augmentation structure S[ϵ2]/(ϵ2) → S, but the ob-
servation that we can view them as precategory actions gives us a very direct access
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to a theory of descent, given that precategory actions are essentially generalised de-
scent data. More generally, we can translate problems from differential algebraic
geometry into the known realm of algebraic geometry.

In algebraic geometry, descent usually works only for very specific indexed data
on schemes, so we work with a chosen pseudofunctor

P : (Sch/S)
op → Cat,

and extend it in a natural way, using precategory actions, to a pseudofunctor on
differential schemes

δ-P : δ-SchopS → Cat.

In the special case when P(V ) is a certain class of scheme morphisms with target
V , the category δ-P(X, δX) consists of differential scheme morphisms with target
(X, δX) whose underlying scheme morphism belongs to the class P.

If X = (X2, X1, X0) is a precategory in Sch/S that corresponds to a differential
scheme (X, δ0) viewed as an D(S)-action, then the categorical scheme of leaves of
(X, δX) agrees with the scheme of connected components of X,

π0(X) ≃ π0(X) = Coeq (X1 X0)
d0

d1

whenever either of them exist in Sch/S .
Moreover, (X, δX) is simple with respect to P, provided the above coequaliser

exists and is universal for P. This condition ensures that the precategory morphism

ηX : X→∆(π0(X))

to the dicrete precategory associated to the scheme π0(X) is of precategorical de-
scent, i.e., the induced functor of precategory actions

CX : P(π0(X)) ≃P∆(π0(X)) η∗X−→PX ≃ δ-P(X, δX)

is fully faithful.
By developing the theory of descent in the category of differential schemes as

precategory actions, we establish in 4.49 that a morphism

f : (X, δX)→ (Y, δY )

is of effective descent for δ-P, if the associated morphism (f0, f1, f2) of precategory
actions satisfies that the underlying scheme morphism f0 : X → Y is of effective
descent for P, and f1 is descent for P.

Consequently, such an f is of effective descent for the fibration of polarised
quasi-projective differential morphisms if f0 is faithfully flat quasi-compact (fpqc).
Moreover, if the target of f is a spectrum of a differential field, then it is of effective
descent for the class of quasi-projective differential morphisms.

1.4. Galois theory of differential schemes. A good understanding of the two
types of descent provides all the ingredients needed for a Picard-Vessiot style cate-
gorical Galois theory of differential schemes. The framework for the indexed version
of categorical Galois theory involves the following choices:

(1) let S be a scheme, and

X = Sch/S

be the category of schemes over S;
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(2) let A be the full subcategory of δ-SchS of those S-differential schemes that
have a categorical scheme of leaves, hence we obtain a functor

π0 : A →X ;

(3) a pseudo-functor

P : X op → Cat,

determining a pseudofunctor δ-P : A op → Cat;
(4) let

C = CP : P ◦ π0 → δ-P

be the pseudo-natural transformation whose component at (X, δ) ∈ A is
the functor CX discussed above.

We define the category

SplitC(f)

as the full subcategory of objects P ∈ δ-P(Y ) such that f∗P ≃ CX(Q) for some
Q ∈P(π0(X)).

We define a morphism f : (X, δX)→ (Y, δY ) in A to be pre-Picard-Vessiot with
respect to P, if

cls-desc (i) f is a morphism of effective descent for δ-P;
cube-simple (ii) X, X ×Y X, X ×Y X ×Y X are simple for P.

If we have

(5) a suitable (in the sense of 6.2) pseudo-natural transformation

U : P ⇒ S

to a fibration S associated with a class of scheme morphisms,

then we define f to be Picard-Vessiot with respect to U if, in addition to the first,
it satisfies the strengthening of the second condition,

(ii’) X is simple for S and f is auto-split for S in the sense that f ∈ SplitCS (f).

The assumption that f is pre-Picard-Vessiot for P ensures that the kernel-pair
groupoid

Gf : X ×Y X ×Y X X ×Y X X

is a category in A , and that we can define the Galois precategory

Gal[f ] = π0(Gf )

as a precategory in X . Moreover, if f is Picard-Vessiot for U , then it is also
pre-Picard-Vessiot for P and G[f ] happens to be an internal groupoid in X .

Theorem (Galois theorem for differential schemes, 6.11). A pre-Picard-Vessiot
morphism f for P induces an equivalence

SplitC(f) ≃PGal[f ]

between the category of objects of δ-P(Y ) that are C-split by f and the category of
P-actions of the precategory Gal[f ].

If f is Picard-Vessiot for U , the latter becomes the category of P-actions of the
groupoid Gal[f ].
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From our perspective,

Differential Galois theory = (precategorical) descent + categorical Galois theory.

More precisely, condition (i) from the definition of pre-Picard-Vessiot morphisms
ensures effective classical descent for precategory actions, while condition (ii) en-
sures the new type of precategorical descent where needed to apply the powerful
abstract techniques of categorical Galois theory.

Our Galois precategory appears to be a differential scheme version of truncated
to level 2 higher differential Galois groups developed by Ayoub in

ayoub
[?] as foliated

homotopy types of a differential field. We hope to be able to pursue our techniques
in the direction of higher category theory along similar lines.

1.5. Applications. Using the above template Galois theorem, we prove the follow-
ing result, which simultaneously refines classical Picard-Vessiot theory and strongly
normal theory of differential field extensions.

Corollary (Quasi-projective differential Galois correspondence 7.3). Let (K, δ) be
a differential field of characteristic 0 with the field of constants k, let S = Spec(k)
and assume

f : (X, δ)→ (Y, δ) = Spec(K, δ)

is a quasi-projective morphism of S-differential schemes such that X is integral
and its only leaf is its generic point and f is auto-split. Then there is a Galois
correspondence between split S-differential quasi-projective fpqc quotients of f in
A and closed subgroups of the S-algebraic group Gal[f ], which takes

X

P

Y

f

p

to

Gal[X → P ].

Conversely, a closed subgroup G′ of Gal[f ] corresponds to the quotient

X/G′.

As far as we are aware, we are able to formulate the first result in differential Ga-
lois theory which works over differential schemes with arbitrary categorical scheme
of constants.

Theorem (Polarised quasi-projective differential Galois theory, 7.7). Let f : (X, δX)→
(Y, δY ) be a morphism of S-differential schemes such that

(1) the underlying scheme morphism X → Y is fpqc;
(2) (X, δX) is simple with respect to S-scheme morphisms, with scheme of

leaves G0;
(3) there is an S-morphism G1 → G0 such that

(X, δX)×(Y,δY ) (X, δX) ≃ (X, δX)×(G0,0) (G1, 0).
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Then f is Picard-Vessiot for the forgetful functor from polarised morphisms to

scheme morphisms, Gal[f ] is the groupoid (G1
−→−→ G0) and we have an equiva-

lence between the category of quasi-projective polarised S-differential morphisms
(P,LP ) → Y split by f and the category of quasi-projective polarised actions
(Q,LQ)→ G0 of Gal[f ].

Parametric differential equations. The specialisation of Galois precategory result
6.13 makes our Galois theory suitable for treating parametric systems of differential
equations where the parameters come from a constant scheme. We illustrate this in
7.8 on an example of an S-differential family f : X → Y of elliptic curves endowed
with a vector field in such a way that π0(X) = π0(Y ) = S and the Galois groupoid
is a family of elliptic curves over S

Gal[f ] = E −→−→ S.

As the parameter s varies over S(L), the specialisation formula 6.13 give that

Gal[f ]s = Gal[fs] = Es,

as an algebraic group over L, so our Galois groupoid specialises to classical Galois
groups of strongly normal extensions associated with fs calculated by Kolchin in
kolchin-sn
[19].
The Galois groupoid of a differential equation. In 7.9, we show that our notion of
a Picard-Vessiot morphism can be used to study symmetries of linear differential
equations through a canonical Galois groupoid, without making a non-canonical
choice of a Picard-Vessiot extension as in the classical theory. We study a Picard-
Vessiot morphism of differential schemes f : X → Y where X is associated to the
full universal solution algebra of the Airy equation

y′′ = xy,

which yields a Galois groupoid of the form

Gal[f ] = G1
−→−→ G0,

where the points of the object of objects G0 correspond to choices of Picard-Vessiot
extensions, and the object of morphismsG1 encodes isomorphisms between different
choices of Picard-Vession extensions.

This is scheme-theoretic generalisation of Deligne’s notion of the fundamental
groupoid of a Tannakian category where the object of object consists of fibre func-
tors, and the object of morphisms consists of isomorphisms between fibre functors.
Indeed, given the Tannakian category of finite-dimensional vector spaces with a
connection over a differential field, fibre functors correspond to Picard-Vessiot ex-
tensions, and we obtain a perfect analogy with our groupoid

deligne-tannakien
[11].

1.6. Layout of the paper. A reader interested only in differential Galois theory
can start perusing the paper from Section 4, and occasionally look up the prereq-
uisites from previous sections. There, we develop differential algebraic geometry,
and discuss the numerous benefits of our original approach to differential schemes
as precategory actions, including the consideration of the categorical schemes of
leaves as connected components of precategories, simplicity of differential schemes
through universality of connected components, polarised differential schemes. One
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of the most important topics we develop is the theory of descent for differential
scheme morphisms.

In Section 5, we explore the extent to which the classical categorical Galois
theory of Janelidze explains the affine Picard-Vessiot Galois correspondence.

In Section 6, we reap the benefits of the flexibility that the indexed version of
categorical Galois theory brings to differential algebraic geometry, and formulate a
very general template for the Galois theory of differential schemes. We apply this
theory in concrete settings of quasi-projective differential Galois correspondence
that works over a base differential field, and polarised quasi-projective differential
Galois theory that works over arbitrary differential schemes.

On the other hand, we must emphasise that previous sections contain a myriad
of results that may be of independent interest in category theory, especially in view
of connections to recent work related to descent theory

le-creurer
[22],

nunes
[23],

prezado-nunes
[29],

nunes-prezado-sousa
[24] that we

do not fully understand yet.
In Section 2, we discuss precategories and their actions, which, viewed as gen-

eralised descent data, give rise to a new form of precategorical descent, and find
sufficient conditions for effective descent. We develop a whole calculus of pullbacks
of descent data, and apply it to obtain a result on descent of quasi-projective mor-
phisms. We also discuss classical descent of precategory actions that gets applied
in the differential context later.

In Section 3, we recall the foundations of Janelidze’s categorical Galois theory,
its indexed form from his book with Borceux, and we expand the minute details of
the Carboni-Magid-Janelidze categorical Galois correspondence that are implicit in
the original paper

carboni
[10].

This paper was largely motivated by numerous discussions with George Janelidze,
Andy Magid, Akira Masuoka, Tom Scanlon and Michael Wibmer, so we thank them
all for sharing their time and knowledge with us.

2. Descent
s:descent

Throughout this appendix, let C denote a category with pullbacks, and let

P → C

be a fibred category equipped with a cleavage. Equivalently, we have an indexed
category associated to a pseudofunctor

P : C op → Cat

where, for an object U in C , the fibre of P over U is the U -indexed component of
P ,

P(U) = P (U),

and, for a morphism U
f→ V in C , we have a pullback functor

f∗ = P (f) : P(V )→P(U).

2.1. Precategories and their actions. Let ∆2 be the diagram category

• • •
2 1 0

r0

m

r1

d0

n

d1
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with

d0r1 = d1r0, d0n = id0,

d0m = d0r0, d1n = id0,

d1m = d1r1.

A precategory in a category C is a functor

C : ∆2 → C .

Equivalently, it is a diagram

C2 C1 C0

r0

m

r1

d0

n

d1

in C , where the morphisms satisfy the relations indicated above.
The category of precategories in C is the functor category

PreCat(C ) = [∆2,C ].

precat-discr Definition 2.2. The discrete precategory associated to an object U of C is the
diagram

∆(U) : U U U

where all the morphisms are identities on U .

precat-ker-pair Definition 2.3. The precategory associated to the kernel pair of a morphism u :
U ′ → U in a category C admitting pullbacks is the diagram

Gu : U ′ ×U U ′ ×U U ′ U ′ ×U U ′ U ′
π01

π02

π12

π0

∆

π1

which happens to be a groupoid without the inversion of morphisms named. Note
that, using the notation from 2.2,

∆(U) = GidU
.

Definition 2.4. For C ∈ PreCat(C ), the category of C-actions in P is the bilimit

PC = lim(P ◦ C)

of the diagram of categories and functors

P(C2) P(C1) P(C0).

r∗0

m∗

r∗1

d∗0

n∗

d∗1

More explicitly, an action P ∈PC consists of objects

P2 ∈P(C2), P1 ∈P(C1), P0 ∈P(C0),
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and isomorphisms

P2
ρ0→ r∗0P1, P1

δ0→ d∗0P0, P0
η→ n∗P1,

P2
µ→ m∗P1, P1

δ1→ d∗1P0,

P2
ρ1→ r∗1P1,

such that the diagram

n∗d∗0P0 n∗P1 n∗d∗1P0

P0

n∗δ0 n∗δ1

∼
η ∼

commutes in P(C0), and the diagram

m∗d∗0P0 m∗P1 m∗d∗1P0

r∗0d
∗
0P0 P2 r∗1d

∗
1P0

r∗0P1 r∗1P1

r∗0d
∗
1P0 r∗1d

∗
0P0

r∗0δ0

r∗0δ1

m∗δ0 m∗δ1

r∗1δ0

r∗1δ1

µ

ρ0 ρ1

∼ ∼

∼

commutes in P(C2), where the unnamed arrows are coherence isomorphisms.

actions-self-ind Definition 2.5. The category of C-actions in C is

C C = Self(C )C,

where Self(C )(C) = C/C is the self-indexing of C by slicing.

gen-dd Remark 2.6. By considering the composite

d∗0P0 P1 d∗1P0
δ0 δ1

φ

we see that an action P is equivalently given by an object P0 ∈ P(C0) and an
isomorphism φ : d∗0P0 → d∗1P0 in P(C1) such that the diagram

n∗d∗0P0 n∗d∗1P0

P0

n∗φ

∼ ∼



12 BEHRANG NOOHI AND IVAN TOMAŠIĆ

commutes in P(C0), and the cocycle condition holds, i.e., the diagram

m∗d∗0P0 m∗d∗1P0

r∗0d
∗
0P0 r∗1d

∗
1P0

r∗0d
∗
1P0 r∗1d

∗
0P0

r∗0φ

m∗φ

r∗1φ

∼ ∼

∼

commutes in P(C2).
A morphism

(P,φ)→ (P ′, φ′)

between two C-actions considered this way is given by a morphism ψ : P0 → P ′0 in
P(C0) such that the diagram

d∗0P d∗0P
′

d∗1P d∗1P
′

d∗0ψ

φ

d∗1ψ
φ′

commutes in P(C1).

action-fibred Remark 2.7. In terms of the fibration P → C , an action in PC is given by a
precategory P ∈ PreCat(P)

P2 P1 P0

r0

m

r1

d0

n

d1

living above C, where the arrows in P are cartesian.

2.8. Connected components of precategories.

def-conn-comp Definition 2.9. The object of connected components of a precategory C ∈ PreCat(C )
is the reflexive coequaliser

C1 C0 π0(C),
d0

d1

provided it exists in C .
If P : C op → Cat is a pseudofunctor, the object of connected components of an

action P ∈PC is defined as the object of connected components of the precategory
P ∈ PreCat(P) associated to P via 2.7,

π0(P ) = π0(P),
provided it exists in the fibred category P over C .

coeq-above-coeq Lemma 2.10. With the notation from 2.9, suppose that π0(C) and π0(P ) exist.
Then π0(P ) projects to π0(C), i.e., a reflexive coequaliser

P1 P0 π0(P )
d0

d1

ρ
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in P projects to a reflexive coequaliser

C1 C0 π0(C)
d0

d1

c

in C .

Proof. Writing p : P → C for the given fibration, and using the fact that c is
a coequaliser, there exists a unique morphism t : S → p(π0(P )) in C such that
p(ρ) = tc. Writing θ : t∗π0(P ) → π0(P ) for a cartesian lift of t, there is a unique
γ : P0 → t∗π0(P ) such that p(γ) = c and θγ = ρ.

Since θ is cartesian, we obtain that γ coequalises dP0 and dP1 , so, since ρ is a
coequaliser, there exists a unique morphism σ : π0(P )→ t∗π0(P ) such that σρ = γ.

From the above, θσρ = θγ = ρ, and, since ρ is an epimorphism, we obtain that

θσ = id .

Thus, θσθ = θ, and, since θ is cartesian, in order to show that

σθ = id,

it suffices to verify that p(σθ) = id. Indeed, p(σθ)c = p(σ)tc = p(σ)p(ρ) = p(σρ) =
p(γ) = c, and the conclusion follows since c is an epimorphism.

□

part-adj-pi0 Proposition 2.11. With notation and assumptions of 2.10, the pullback functor

η∗C : P(π0(C)) ≃P∆(π0(C)) →PC

induced by the unique precategory morphism

ηC : C→∆(π0(C))

determined by η0 = c has a partial left adjoint π0 defined at P , i.e., we have a
bijection

P(π0(C))(π0(P ), Q) ≃PC(P, η∗CQ),

natural in Q ∈P(π0(C)), and P ∈PC, whenever π0(P ) exists.

Proof. The assumptions yield the diagram

P2 P1 P0

π0(P ) π0(P ) π0(P )

η∗2Q η∗1Q η∗0Q

Q Q Q

C2 C1 C0

π0(C) π0(C) π0(C)

f2 f1 f0

q2 q1 q0

ηP2 ηP1 ηP0

η2 η1 η0

f f f
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without the dashed arrows, where all horizontal arrows in P except possibly ηP0 ,
ηP1 and ηP2 are cartesian.

By construction, q0 coequalises the source and the target morphisms of η∗Q,
whence, if we take a morphism (f0, f1, f2) ∈PC(P, η∗Q), q0f0 coequalises dP0 , d

P
1 ,

so there exists a unique morphism f : π0(P )→ Q that makes the rightmost vertical
square, and ultimately the whole diagram, commutative.

Conversely, if we start with a morphism f : π0(P ) → Q, using that q0 is carte-
sian, we obtain a unique morphism f0 : P0 → η∗0Q that makes the rightmost
vertical square commutative. Since the composite η∗1Q → η∗0Q → Q is cartesian,
we obtain a unique morphism f1 : P1 → η∗1Q which makes the square involving
P1, η

∗
1Q,Q, π0(P ) commutative, and, given that q0 is cartesian, f1 and f0 commute

with source and target morphisms. Using that q1 is cartesian, f1 and f0 commute
with the identity sections. Continuing in the same fashion, we obtain a unique
f2 : P2 → η∗2Q that makes the whole diagram commutative. □

2.12. Precategorical descent.

def:precat-desc Definition 2.13. Let

f : C→ D
be a morphism in PreCat(C ). We say that

(1) f is a descent morphism for P, if the functor f∗ : PD → PC is fully
faithful, and

(2) f is of effective descent for P, if the functor f∗ : PD →PC is an equiva-
lence of categories.

univ-ce-desc Lemma 2.14. Suppose that the reflexive coequaliser

C1 C0 π0(C)
d0

d1

exists in C .
The morphism of precategories

η : C→∆(π0(C))

is a descent morphism for P if and only if the above reflexive coequaliser is universal
for P, i.e., for every Q ∈P(π0(C)), the diagram

η∗1Q η∗0Q Q

remains a coequaliser.

Proof. The above diagram is a coequaliser if and only if π0(η
∗Q) ≃ Q, making η∗

fully faithful. □

2.15. Descent data.

def-dd Definition 2.16. Given a family U = {Ui
ui→ U : i ∈ I} of morphisms in C , the

category of descent data

DD(U )

consists of tuples (
(Pi)i∈I , (φij)(i,j)∈I2

)
,

where

• for every i ∈ I, Pi ∈P(Ui);



GALOIS THEORY OF DIFFERENTIAL SCHEMES 15

• for every i, j ∈ I, φij : π∗ij,iPi → π∗ij,jPj is an isomorphism in P(Uij),
where Uij = Ui ×U Uj and the corresponding projections are given by the
pullback diagram

Uij

Ui Uj

U

πij,i πij,j

ui uj

satisfying the cocycle condition: for every i, j, k ∈ I, considering the triple pullback
Uijk = Ui ×U Uj ×U Uk and the corresponding projections

Uijk

Uij Uik Ujk

Ui Uj Uk

U

ui
uj uk

the diagram

π∗ijk,iPi π∗ijk,kPk

π∗ijk,jPj

π∗
ijk,ijφij

π∗
ijk,ikφik

π∗
ijk,jkφjk

commutes in P(Uijk).
A DD(U )-morphism

((Pi)i, (φij)ij)→
(
(P ′i )i, (φ

′
ij)ij

)
consists of a family of morphisms (Pi

ψi→ P ′i )i∈I in P(Ui) such that the diagrams

π∗ij,iPi π∗ij,iP
′
i

π∗ij,jPj π∗ij,iP
′
j

π∗
ij,iψi

φij

π∗
ij,jψj

φ′
ij

commute in P(Uij).

2.17. Pullback of descent data.

Definition 2.18. Let U = {Ui
ui→ U : i ∈ I} and V = {Vj

vj→ V : j ∈ J} be two
families in C .
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A morphism γ : U → V is given by a map of indices α : I → J , a morphism
g : U → V in C and a family of commutative diagrams

Ui Vα(i)

U V

gi

ui

g

vα(i)

for i ∈ I.
If γ′ : (α′, g′, g′i) is another morphism U → V with g = g′, we say that mor-

phisms γ and γ′ are homotopy equivalent and write

γ ∼ γ′.

pbdesc Lemma 2.19 (Pullback of descent data,
stacks-project
[30, 8.3.3]). A morphism γ : U → V as

above gives a functor

γ∗ : DD(V )→ DD(U ),

(Pj , φjj′) 7→ (g∗i Pα(i), (gi × gi′)∗φα(i)α(i′)).

Moreover, if γ ∼ γ′, their associated pullback functors are canonically isomorphic,

γ∗ ≃ γ′∗.

def-effdesc Definition 2.20. With notation from 2.19, we say that

(1) γ : U → V is a descent morphism, if the functor γ∗ : DD(V )→ DD(U ) is
fully faithful, and

(2) γ : U → V is of effective descent, if γ∗ : DD(V )→ DD(U ) establishes an
equivalence of categories.

Remark 2.21. Given a morphism f : U ′ → U in C , the above definition applied to
the morphism of families f□ given by the diagram

U U ′

U U

f

f

id

id
f□

tells us that f□ is a morphism of descent (resp., effective descent) if the functor

f∗□ : P(U) = DD(idU )→ DD(f)

is fully faithful (resp., an equivalence).
Hence, f is a morphism of descent/effective descent in the classical sense when-

ever f□ is descent/effective descent in the sense of 2.20.

def-horbox Definition 2.22 (Horizontal composition of boxes). The horizontal composition of
boxes φ and ψ in C

U V W

U ′ V ′ W ′

f

v

f ′

u φ

g

w

g′

ψ
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is the box φ ◦ ψ given by the diagram

U W

U ′ W ′

f ◦ g

w

f ′ ◦ g′
u φ ◦ ϕ

rem-horbox Remark 2.23. With notation of 2.22, as an immediate consequence of the definition
of pullback functors from 2.19, we obtain an isomorphism of functors

(φ ◦ ψ)∗ ≃ ψ∗ ◦ φ∗.

def-vertbox Definition 2.24 (Vertical composition of boxes). The vertical composition of boxes
φ and φ′ in C

U V

U ′ V ′

U ′′ V ′′

f

v

f ′

v′

u

u′

f ′′

φ

φ′

is the box φ′ ∗ φ given by the diagram

U V

U ′′ V ′′

f

v′ ◦ v
f ′′

u′ ◦ u φ′ ∗ φ

lem-vertbox Lemma 2.25. With the notation of 2.24, if φ is a descent morphism, and

(f × f)∗ : P(U ×U ′′ U)→P(V ×V ′′ V )

is faithful, then φ′ ∗ φ is a descent morphism.

Proof. The boxes

U U

U ′′ U ′

id

u

u′
u′ ◦ u

ρU

V V

V ′′ V ′

id

v

v′
v′ ◦ v

ρV

satisfy

(φ′ ∗ φ) ◦ ρV = ρU ◦ φ,
so we obtain a diagram of categories

DD(u′ ◦ u) DD(v′ ◦ v)

DD(u) DD(v)

(φ′ ∗ φ)∗

ρ∗U
φ∗

ρ∗V

where the vertical arrows are faithful.
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Indeed, ρ∗U takes objects (P, α) ∈ DD(u′◦u) to (P, (id× id)∗α) = (P, (U×U ′U →
U ×U ′′ U)∗α), and it acts on morphisms p : (P, α) → (P ′, α′) as identity, hence it
is faithful. A similar argument applies to ρ∗V .

By assumption, the bottom arrow φ∗ is also faithful, and it follows that the top
arrow (φ′ ∗ φ)∗ is too.

It suffices to verify that (φ′ ∗ φ)∗ is full. Let (P, α), (P ′, α′) ∈ DD(u′ ◦ u), let
(Q, β) = (φ′ ∗ φ)∗(P, α), (Q′, β′) = (φ′ ∗ φ)∗(P ′, α′), and let q : (Q, β) → (Q′, β′)
be a morphism in DD(v′ ◦ v), given by a morphism q : Q→ Q′ in P(V ) such that
the diagram

π∗1Q π∗1Q
′

π∗2Q π∗2Q
′

π∗
1q

β

π∗
2q

β′

commutes in P(V ×V ′′ V ).
Since φ∗ is fully faithful, there exists a unique morphism p : ρ∗U (P, α)→ ρ∗U (P

′, α′)
such that φ∗(p) = ρ∗V (q), i.e., a morphism p : P → P ′ in P(U) with f∗(p) = q.

We claim that p is a morphism (P, α) → (P ′, α′) in DD(u′ ◦ u), i.e., that the
diagram

π∗1P π∗1P
′

π∗2P π∗2P
′

π∗
1p

α

π∗
2p

α′

commutes in P(V ×V ′′ V ). This is indeed the case, since pulling the diagram back
to P(V ×V ′′ V ) via the faithful functor (f × f)∗ gives the above diagram for q,
which is commutative.

□

secteff Lemma 2.26 (A morphism admitting a section is of effective descent). Suppose we
have a morphism f : U ′ → U admitting a section s : U → U ′, so that f ◦ s = idU .
Then f is of effective descent. More explicitly, the functor

f∗ = f∗□ : P(U)→ DD(f)

has a quasi-inverse σ∗ associated to the box

U ′ U

U U

s

id

id

f σ

Proof. The composite σ ◦ f□ represents the outer box of the diagram

U ′ U ′

U U

id

s ◦ f

f

id

f
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and let us denote the inner box by idf . These boxes are homotopy equivalent in
the sense of the ‘moreover’ clause of 2.19, whence

f∗□σ
∗ ≃ (σ ◦ f□)∗ ≃ id∗f = id : DD(f)→ DD(f).

Conversely, using the fact that s is a section of f ,

σ∗f∗□ ≃ (f□ ◦ σ)∗ = id : DD(idU )→ DD(idU ).

□

2.27. Classical and precategorical descent. Let u : U ′ → U be a morphism in
C , and consider the groupoid

Gu
associated to the kernel pair of u, as in 2.3

Comparing 2.6 and 2.16, we see that we have an isomorphism

DDP(u) = PGu .

Moreover, a box

U ′ V ′

U V

f ′

u

f

v
φ

induces a morphism

F = (f ′ × f ′ × f ′, f ′ × f ′, f ′) : Gv → Gu,

and the functors

φ∗ : DD(u)→ DD(v), and F ∗ : PGu →PGv

are isomorphic.
Hence, φ is a morphism of descent/effective descent in the classical sense of 2.20

if and only if F is a morphism of descent/effective precategorical descent in the
sense of 2.13.

In particular, a morphism u : U ′ → U is a morphism of descent/effective descent
in the classical sense if and only if u□ is of descent/effective descent, if and only if
the precategory morphism Gu → ∆(U) = GidU

is a morphism of descent/effective
precategorical descent.

2.28. Descent of precategory actions.

prop:desc-precat Proposition 2.29. Let P : C op → Cat be a pseudofunctor, and consider the
pseudofunctor

P̃ : PreCat(C )op → Cat, X 7→PX.

Let f : C→ D ∈ PreCat(C ) be a morphism of precategories in C such that

(1) f0 is of effective descent for P;
(2) f1 is descent morphism for P;
(3) f∗2 is faithful.

Then f is of effective descent for P̃.
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Proof. We must show that the canonical morphism

PD = P̃(D)→ P̃Gf = DDP̃(f)

is an equivalence of categories, where

Gf ∈ PreCat(PreCat(C ))

is given by

G2 = C×D C×D C G1 = C×D C G0 = C

withG0,G1,G2 ∈ PreCat(A )/D. Expanding the components of these precategories
as columns, we obtain a diagram

C2 ×D2
C2 ×D2

C2 C2 ×D2
C2 C2

C1 ×D1
C1 ×D1

C1 C1 ×D1
C1 C1

C0 ×D0
C0 ×D0

C0 C0 ×D0
C0 C0

where the rows are the groupoids Gf2 , Gf1 , Gf0 associated to kernel pairs of mor-
phisms f2, f1, f0 that constitute f .

An action P ∈ P̃Gf consists of a diagram

P2 P1 P0

consisting of P2 ∈ P̃(G2) = PG2 , P1 ∈ P̃(G1) = PG1 , P0 ∈ P̃(G0) = PG0 and

cartesian arrows in the fibration associated to P̃. Expanding the components of
P2, P1 and P0 as columns, we obtain a diagram

P2,2 P1,2 P0,2

P2,1 P1,1 P0,1

P2,0 P1,0 P0,0

in the fibred category associated to P, with all morphisms cartesian.
Hence, the rows yield actions P̄2 ∈ PGf2 ≃ DDP(f2), P̄1 ∈PGf1 ≃ DDP(f1),

P̄0 ∈PGf0 ≃ DDcP (f0). Considering descent data as a pseudofunctor on the arrow
category

DDP : Ar(C )op → Cat,

the diagram

P̄2 P̄1 P̄0

determines an action

P̄ ∈ DDfP
where f = (f2, f1, f0) ∈ PreCat(Ar(C )).
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Hence, we have shown that

DDP̃(f) ≃ DDfP .

Since f0 is effective descent, there is an object Q0 ∈ P(D0) such that, writing
Q̄0 = (Q0, id) for the trivial descent datum, we have P̄0 ≃ f∗0□Q̄0. The action

isomorphism d∗0,f P̄0
α→ d∗1,f P̄0 yields an isomorphism

f∗1□d̄
∗
0Q̄0 ≃ d∗0,ff∗0□Q̄0 ≃ d∗0,f P̄0

α→ d∗1,f P̄0 ≃ d∗1,ff∗0□Q̄0 ≃ f∗1□d̄∗1Q̄0,

where we wrote d̄0 and d̄1 for the obvious boxes/morphisms idD1 → idD0 in Ar(C ).
Given that f1 is descent, we obtain a unique action morphism

d̄∗0Q̄0
β̄→ d̄∗1Q̄0

such that f∗1□β̄ ≃ α. Note that β̄ is uniquely determined by an isomorphism

d∗0Q0
β→ d∗1Q0,

and it remains to verify that β satisfies the cocycle condition

r∗1β ◦ r∗0β ≃ m∗β
in P(D2), or, equivalently, that r̄

∗
1 β̄◦r̄∗0 β̄ and m̄∗β̄ agree up to coherence. Applying

the functor f∗2□ to both yields

f∗2□r̄
∗
1 β̄ ◦ f∗2□r̄∗0 β̄ ≃ r∗1,ff∗1□β̄ ◦ r∗0,ff∗1□β̄ ≃ r∗1,fα ◦ ◦ r∗0,fα

and
f∗2□m̄

∗β̄ ≃ m∗ff∗1□β̄ ≃ m∗fα,
which agree up to coherence by the cocycle condition for α. By faithfulness of f∗2□,
we obtain the cocycle condition for β, and we have constructed a unique action
(Q0, β) ∈PD (up to isomorphism) that lifts to P , as desired. □

2.30. Descent for quasi-projective morphisms.

efdesc-qp Proposition 2.31. A scheme morphism f : X → Y whose codomain Y is the
spectrum of a field k is of effective descent for quasi-projective morphisms.

Proof. Let k′ be a finite extension of k with X(k′) ̸= ∅. Writing Y ′ = Spec(k′), we
have a pullback diagram

X X ′

Y Y ′

g′

f ′

g

f

where f ′ admits a section s afforded by a k′-point of X ′. The morphism g is finite
locally free surjective, hence of effective descent for quasi-projective morphisms by
sga1
[15, VIII, 7.7], and so is g′ as a base-change of g. Consider the diagram

X X ′ Y ′ X ′

Y Y Y Y

g′

fg′=gf ′

id

f α

s

g

id

β

f ′

gf ′

id

γ

defining boxes α, β and γ in C .
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Writing σ for the box

X Y ′

Y ′ Y ′

s

id

id

f ′ σ

we directly verify that β = idg ∗σ and γ = idg ∗f ′□.
As in the proof of 2.26, we have that σ ◦ f ′□ ∼ idf ′ , so

β ◦ γ = (idg ∗σ) ◦ (idg ∗f ′□) = idg ∗(σ ◦ f ′□) ∼ idg ∗ idf ′ = idg◦f ′ ,

whence

γ∗β∗ ≃ id .

Conversely, γ◦β yields identity on the nose, so we conclude that γ∗ is an equivalence
of categories.

Using the fact that g′ is of effective descent and that g′×g′ is finite faithfully flat,
Lemma 2.25 gives that the functor α∗ associated to α = idf ∗g′□ is fully faithful.

We directly verify that g□ ◦γ = f□ ◦α, whence we obtain a diagram of categories

DD(f)

P(Y ) DD(fg′)

DD(g)

f∗
□

g∗□ γ∗

α∗

where we know that α∗f∗□ = γ∗g∗□ is an equivalence of categories, and α∗ is fully
faithful, so we deduce that f∗□ is also an equivalence. □

3. Categorical Galois theory
s:cat-galss:janelidze-gal

3.1. Classical Janelidze’s categorical Galois theory. Consider an adjoint pair
of functors

A

X

S C⊣

with unit η : id → CS and counit ϵ : SC → id. If A admits pullbacks, for any
X ∈ A we obtain an adjunction

A/X

X/S(X)

SX CX⊣

where

SX(A
a−→ X) = S(A)

S(a)−−−→ S(X),

and CX(E
e−→ S(X)) is obtained by forming the pullback
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CX(e) C(E)

X CS(X)

C(e)

ηX

in A .

A morphism X
f−→ Y in A gives rise to the pullback/base change functor

f∗ : A/Y → A/X ,

which admits a left adjoint

f! : A/X → A/Y , a 7→ f ◦ a.

Following
borceux-janelidze
[8, Def. 5.1.7] an object A

a−→ Y ∈ A/Y is split by X
f−→ Y ∈ A when the

unit ηX : id→ CXSX of adjunction SX ⊣ CX gives an isomorphism

ηXf∗a : f∗a→ CXSX(f∗a).

If CX is fully faithful, a is split by f (
borceux-janelidze
[8, Cor. 5.1.13]), if and only if there exists

an object E
e−→ S(X) such that

f∗a ≃ CX(e).

We write
SplitY (f)

for the full subcategory of A/Y of objects split by f .
The morphism f is of relative Galois descent if

(1) f∗ is monadic;
(2) the counit ϵX : SXCX → id of adjunction SX ⊣ CX is an isomorphism;

(3) for every E
e−→ S(X) in X/S(X), the object f! CX(e) ∈ A/Y is split by f .

If X
f−→ Y is of relative Galois descent, the Galois precategory

Gal[f ] = S(Gf )
is actually an internal groupoid in X given by the data

S(X ×Y X)×S(X) S(X ×Y X) S(X ×Y X) S(X)
(S(π1), S(π4))

S(π1)

S(∆)

S(π2)

S(τ)

where τ is the morphism interchanging the copies of X, and ∆ is the diagonal.
Janelidze’s Galois theorem (

borceux-janelidze
[8, Thm. 5.1.24]) gives an equivalence of categories

SplitY (f) ≃X Gal[f ].

of f -split objects and the actions of the internal groupoid Gal[f ] in X , as in 2.5.
The proof consists in verifying that the monad T associated to the adjunction

SplitY (f)

X/S(X)

U = SX f∗F = f! CX ⊣
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of the monadic functor U (
borceux-janelidze
[8, Cor. 5.1.21]), with functorial part T = UF , is

isomorphic to the monad T′ on X/S(X) associated to the adjunction

X Gal[f ]

X/S(X)

U ′F ′ ⊣

where U ′ is the forgetful functor omitting the groupoid action, and F ′ is the ‘rep-
resentable internal diagram’ functor, whose functorial part is T ′ = d1!d

∗
0 and the

category of algebras is the category X Gal[f ]. Hence, we obtain equivalences

SplitY [f ]
KT

−→ (X/S(X))
T ≃ (X/S(X))

T′ KT′

←−X Gal[f ],

where we wrote KT and KT′
for the comparison functors of the respective monads.

In this case, modulo the identification of the category of T-algebras (X/S(X))
T

with X Gal[f ], the functors realising the sought-after equivalence are the comparison
functor

Φ = KT : SplitY (f)
∼−→ (X/S(X))

T, p 7→ (U(p), U(εp)),

and its left adjoint

Ψ : (q, ν) 7→ Coeq (FUF (q) F (q))
F (ν)

εFq
,

where (Q
q→ X0, ν) is a T-algebra and ε : FU → id is the counit of the adjunction

F ⊣ U , and the coequaliser exists by the proof of Beck’s monadicity criterion as in
barr-wells
[4, 3.14].

By identifying T and T′, and writing Gal[f ] = (S(X ×Y X), S(X)) = (G1, X0),
the top arrow appearing in the coequaliser is obtained by applying F to the action

G1 ×X0
Q

ν→ Q, which, modulo the identification X ×X0
(G1 ×X0

Q) ≃ X ×X0

G1 ×X0 Q gives the morphism

id×ν : X ×X0 G1 ×X0 Q→ X ×X0 Q.

If p ∈ SplitY [f ] then f
∗(p) ≃ CX(q) for some q, whence the counit εp is

FUp = f!CXSXf
∗p ≃ f!CXSXCXq ≃ f!CXq ≃ f!f∗p→ p,

so the bottom arrow εFq identifies with f!f
∗Fq → Fq, which, modulo the isomor-

phism

X×Y (X×X0
Q) ≃ (X×YX)×X(X×X0

Q) ≃ (X×X0
G1)×X(X×X0

Q) ≃ X×X0
G1×X0

Q,

identifies with

µ× id : X ×X0 G1 ×X0 Q→ X ×X0 Q,

where µ denotes the Gal[f ]-action on X. Thus, we may symbolically write the
above coequaliser as the quotient

Ψ(q, ν) = Coeq(id×ν, µ× id) = F (q)/Gal[f ] = (X ×X0
Q)/Gal[f ],

by the twisted-diagonal action of the Galois groupoid on X ×X0
Q.
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3.2. Carboni-Magid-Janelidze Galois correspondence.

Fact 3.3 (
carboni
[10]). Let C be a category with pullbacks and coequalisers of equivalence

relations. In the presence of pullbacks, regular epimorphisms coincide with effective
epimorphisms, and we call them quotients for short.

Let G = (G1, G0, d0, d1, e,m) be an internal groupoid in C . Let us write G̃ ∈ CG

for the canonical action of G on itself. There is a bijection

Sub(G) ≃ Equiv(G̃)

between the set of subgroupoids of G with the same object of objects and the set of
equivalence relations on G̃ in CG as follows.

Given a subgroupoid G′ = (G′1, G0) with ι : G
′
1 ↪→ G1, the corresponding equiva-

lence relation on G̃ is

RG′ = G1 ×G0
G′1 G1

π1

m(idG1
×ι)

Conversely, if R ↪→ G̃× G̃ is an equivalence relation on G̃ in CG, we define the
corresponding subgroupoid by the pullback

G′1 R

G1 G1 ×G0 G1

(idG1
, ed1)

where G1 ×G0 G1 is the kernel pair of d1.
A subgroupoid is called effective is the associated equivalence relation is effective

in the sense that it is the kernel pair of its coequaliser.

th-cmj-corr Theorem 3.4. With notation from 3.1, suppose that f : X → Y is of relative
Galois descent with Galois groupoid G = Gal[f ] internal in X . There is an anti-
isomorphism

SplitQuo[f ] ≃ EffSub(Gal[f ])

that assigns

X

P 7→ Gal[X → P ]

Y

X/G′ ← [ G′

f

p

between the ordered set of quotients of X over Y in Split[f ] and the ordered set of
effective subgroupoids of Gal[f ].

Proof. We use the equivalence established by functors Φ and Ψ from 3.1 and the
fact that, in the presence of pullbacks, quotients (regular epimorphisms) agree with
effective epimorphisms.
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If the quotient p of X from the above diagram is f -split by Q
q→ X0 = S(X),

i.e., f∗p ≃ CX(q), applying the comparison functor Φ gives an effective quotient

G̃

Q

X0

q

and an effective equivalence relation G̃×Q G̃ ↪→ G̃×X0
G̃ on G̃. The corresponding

effective subgroupoid GP of G is given by

GP,1 G1 ×Q G1

G1 G1 ×G0
G1

(idG1
, ed1)

Conversely, an effective subgroupoid G′ of G is associated with the action

G̃/G′ = Coeq(RG′ −→−→ G̃)

in X G given as the coequaliser of its associated effective equivalence relation, and
then taken to the split quotient

Ψ(G̃/G′) ≃ (X × G̃/G′)/G ≃ X/G′ = f/G′

= Coeq (F (G′1 → X0)→ F (G1 → X0) f)
µ

proj
,

where µ : X ×X0
G1 → X denotes the action of G on X.

The assignments given above clearly establish an equivalence because they are
constructed as restrictions of Φ and Ψ to the appropriate full subcategories, but we
find it useful to provide a direct proof of the correspondence.

By construction, the groupoid associated to X/G′ is

GX/G′ = G×G×X0
G (G×G/G′ G) ≃ GG×X0

G(G×X0 G
′) ≃ G′,

where the isomorphism holds by effectivity.
Conversely, if P is f -split by Q, then

P ≃ Ψ(Q) = Ψ(G/GP ) = (X ×X0
G/GP )/G ≃ X/GP .

It remains to show that GP,1 ≃ S(X ×P X), i.e.,

GP ≃ Gal[X → P ].

By applying CX to the pullback diagram defining GP,1 above, and using the fact
that the right adjoint CX commutes with pullbacks, as well as the relations wit-
nessing splitting of the objects involved, we obtain a pullback diagram

CX(GP,1) f∗(X)×f∗(P ) f
∗(X)

f∗(X) f∗(X)×X f∗(X)
(id,∆ ◦ proj)
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which, using f∗X ≃ X ×Y X and the groupoid structure of Gf , simplifies to
CX(GP,1) ≃ X ×P X, whence GP,1 ≃ SX(X ×P X). □

3.5. Indexed categorical Galois theory.

indexed-gal-th Theorem 3.6 (
borceux-janelidze
[8, 7.5.3, discussion after 7.6.2]). Suppose we are given

(1) a functor S : A →X ;
(2) pseudo-functors K : X op → Cat and L : A op → Cat;
(3) a pseudo-natural transformation α : K ◦ S ⇒ L;

(4) a ‘precategorical decomposition’ of a morphism X
f→ Y in A , i.e., a com-

mutative diagram of morphisms of precategories

∆(X) ∆(Y )

C
i

∆(f)

π

with i0 = idX , and such that the components αC0
, αC1

and αC2
are full

and faithful.

If (f, (i,C, π)) is of effective descent with respect to L, we have an equivalence
of categories

Splitα(f) ≃ KS◦C.

4. Differential algebraic geometry
s:dif-alg

4.1. Differential schemes. A differential scheme

(X, (OX , δX))

is a differentially ringed space where (X,OX) is a scheme, and δX ∈ Der(OX ,OX).
A morphism of differential schemes

(f, φ) : (X, (OX , δX))→ (Y, (OY , δY ))

is a morphism of differentially ringed spaces which is also a scheme morphism, i.e., it
is a scheme morphism (f, φ) : (X,OX)→ (Y,OY ) whose structure homomorphism
is a morphism of differential rings φ : (OY , δY ) → f∗(OX , δX), or, equivalently, its
mate is a morphism of differential rings φ♯ : f∗(OY , δY )→ (OX , δX).

They constitute the category of differential schemes denoted

δ-Sch.

We have an obvious functor

C : Sch→ δ-Sch, (X,OX) 7→ (X, (OX , 0))

that turns a scheme into a differential scheme with the trivial derivation 0.
Given a scheme morphism (f, φ) : (X,OX)→ (S,OS) and an OX -module F , we

say that an additive morphism D : OX → F is an S-derivation of OX to F if it is
an f∗OS-derivation via φ♯ : f∗OS → OX , or, equivalently, if Dx : OX,x → Fx is an
OS,f(x)-derivation via φ♯x : OS,f(x) → OX,x for every x ∈ X. The collection of all
S-derivations of OX to F is denoted

DerS(OX ,F ).

A differential scheme (X, (OX , δX)) equipped with a scheme morphism (f, φ) :
(X,OX)→ (S,OS) is called an S-differential scheme provided δX ∈ DerS(OX ,OX).
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Clearly, an S-differential scheme (X, δX) is a morphism of differential schemes
(X, δX) → C(S) = (S, 0). Thus, the category of S-differential schemes is the slice
category

δ-SchS = δ-Sch/C(S).

4.2. Differential schemes and vector fields. Let (f, φ) : X → S be a scheme
morphism. By

EGAIV4
[14, 16.5.3], the universal differential

dX/S : OX → Ω1
X/S

is an S-derivation, and composing with dX/S induces an isomorphism of Γ(X,OX)-
modules

HomOX
(Ω1

X/S ,F )
∼→ DerS(OX ,F )

for any OX -module F .
Let

TX/S = V(Ω1
X/S)

be the tangent bundle of X relative to S, defined as the vector bundle associated
to the quasi-coherent OX -module Ω1

X/S (i.e., the spectrum of the quasi-coherent

OX -algebra Sym(Ω1
X/S)) see

EGAIV4
[14, 16.5.12].

For a point x ∈ X, the tangent space of X at x relative to S is defined
EGAIV4
[14,

16.5.13] as

TX/S(x) =
(
TX/S ×X Spec(κ(x))

)
(κ(x)) ≃ Homκ(x)(Ω

1
X/S ⊗OX

κ(x), κ(x)).

Choosing an S-derivation δX ∈ DerS(OX ,OX), we therefore obtain a morphism
of OX -modules

Ω1
X/S → OX ,

which yields a section X → TX/S of the relative tangent bundle, that we think of
as a vector field on X relative to S.

Pointwise, for every x ∈ X, pulling back the OX -modules to κ(x)-modules via
the morphism Spec(κ(x))→ X yields a morphism

Ω1
X/S ⊗OX

κ(x)→ κ(x),

an element of TX/S(x). This construction is in line with the classical notion of
vector field in differential geometry as a map that sends a point to a vector in the
corresponding tangent space.

A point x ∈ X is a leaf for the vector field given by δX if the corresponding
tangent vector at x is 0.

4.3. Differential spectra and affine differential schemes. The spectrum of
the underlying ring of a differential ring (A, δA) carries a natural structure of a
differential scheme

Spec(A, δA) = (Spec(A), (OSpec(A), δSpec(A))).

Indeed,

δSpec(A) : OSpec(A) → OSpec(A)

is determined on basic opens D(f) in Spec(A), for f ∈ A by setting

δSpec(A),D(f) : OSpec(A)(D(f)) = Af → Af = OSpec(A)(D(f)),
a

f
7→ δA(a)f − aδA(f)

f2
.
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This construction extends to a functor

Spec : δ-Rngop → δ-Sch,

right adjoint to the global sections functor

Γ : (X, (OX , δX)) 7→ (OX(X), δX,X)

as the diagram

δ-Sch

δ-Rngop

Γ Spec⊣

depicts.
A differential scheme is affine, if it is isomorphic to a spectrum of a differential

ring. Clearly, the category of affine differential schemes is anti-equivalent to the
category of differential rings, i.e.,

δ-Aff ≃ δ-Rngop.

4.4. Differential schemes as precategory actions. Given a scheme S, let us
consider the diagram of quasi-coherent OS-algebras

OS [ϵ0, ϵ1]/(ϵ20, ϵ0ϵ1, ϵ
2
1) OS [ϵ]/(ϵ2) OS

ϵ0 ←[ ϵ
ϵ0 + ϵ1 ← [ ϵ
ϵ1 ←[ ϵ

id+0

ϵ 7→ 0

id+0

Applying the spectrum of quasi-coherent OS-algebras functor
EGAII
[13, 1.3], we obtain

a precategory D(S)

S2 S1 S0

r0

m

r1

d0

n

d1

in Sch/S consisting of schemes affine over S0 = S, and the underlying morphisms of
topological spaces are all identities.

Note, if we write
D(Z) = D(Spec(Z)),

then

D(S) = D(Z)×∆(S) = (S × Spec(Z[ϵ0, ϵ1]/(ϵ20, ϵ0ϵ1, ϵ21)), S × Spec(Z[ϵ]/(ϵ2)), S).

diff-sch-precats Proposition 4.5. The category of S-differential schemes is equivalent to the cat-
egory of D(S)-actions in Sch/S (cf. 2.5),

δ-SchS ≃ (Sch/S)
D(S).

Proof. Using 2.6, an action is determined by a scheme morphism X0 = X →
S = S0 and an S1-automorphism α : X1 → X1, where X1 = X ×S0

S1 satisfying
n∗α = id and the cocycle condition. Equivalently, it is given by an OS [ϵ]/(ϵ2)-
automorphism of OX1 = OX [ϵ]/(ϵ2) which, tensored by the augmentation morphism
ηS : OS [ϵ]/(ϵ2)→ OS gives idOX

, and it follows that it must be of the form

idOX [ϵ]/(ϵ2) +ϵδα ◦ ηX ,
where δα ∈ DerS(OX ,OX) and ηX : OX [ϵ]/(ϵ2) → OX is the augmentation homo-
morphism. Note that such a morphism always has an inverse idOX [ϵ]/(ϵ2)−ϵδα ◦ηX .
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The cocycle condition is trivially satisfied/superfluous, since r∗i α is determined
by the automorphism of OX [ϵ0, ϵ1]/(ϵ

2
0, ϵ0ϵ1, ϵ

2
1) given by id+ϵiδα ◦ηX,2 for i = 0, 1,

andm∗α is given by id+(ϵ0+ϵ1)δα◦ηX,2, where we wrote ηX,2 for the augmentation
homomorphism OX [ϵ0, ϵ1]/(ϵ

2
0, ϵ0ϵ1, ϵ

2
1)→ OX , and these morphisms compose in the

way prescribed by the cocycle condition.
Thus, an action uniquely determines a derivation, and we obtain an S-differential

scheme (X, (OX , δα)).
Conversely, given an S-differential scheme (X, (OX , δX)), we can create a D(S)-

action from the diagram

OX [ϵ0, ϵ1]/(ϵ
2
0, ϵ0ϵ1, ϵ

2
1) OX [ϵ]/(ϵ2) OX

ϵ0 ←[ ϵ
ϵ0 + ϵ1 ← [ ϵ
ϵ1 ←[ ϵ

id+0

ϵ 7→ 0

id+ϵδX

by applying the spectrum of quasi-coherent OP -algebras functor. All the resulting
morphisms are cartesian, so we obtain an action by 2.7. □

C-for-precat Remark 4.6. The scheme of connected components is

π0(D(S)) = S

because it is calculated as the coequaliser of morphisms d0, d1 in D(S), which agree.
Hence, writing

η : D(S)→∆(S)

for the associated morphism of precategories, the functor

C : Sch/S → δ-SchS , T 7→ (T, 0)

corresponds, through the equivalence 4.5, to the functor

η∗ : Sch/S → (Sch/S)
D(S).

delta-P Definition 4.7. Let
P : Schop/S → Cat

be a pseudofunctor on the category of S-schemes.
We define a pseudofunctor

δ-P : δ-SchopS → Cat, δ-P(X, δX) = PX,

where X ∈ PreCat(Sch/S) is the D(S)-action corresponding to X, considered as a
precategory by 2.7.

diff-self Remark 4.8. Assume that the indexed data P : Schop/S → Cat is a full sub-

pseudofunctor of the self-indexing of Sch/S , i.e., for Y ∈ Sch/S , P(Y ) is a full
subcategory of Sch/Y . We can think of P as being associated to a class of mor-
phisms in Sch/S that is stable under pullback, Then, the indexed data δ-P is a
natural differential analogue of that class in the sense that, for (X, δX) ∈ δ-SchS ,

δ-P(X, δX) = {(P, δP )→ (X, δX) ∈ δ-SchS : P → X ∈P(X)},
i.e., it consists of those morphisms of differential schemes with target (X, δX) whose
underlying morphism of schemes belongs to the class P.

Example 4.9. If P(Y ) is the category of quasi-projective morphisms Q → Y ,
then, given an S-differential scheme (X, δS), the fibre δ-P(X, δX) is the category
of S-differential scheme morphisms (P, δP ) → (X, δX) such that P → X is quasi-
projective.
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4.10. Differential schemes as formal group actions. The additive formal group
scheme is given as the formal scheme

Ĝa = Spf(Z[[t]]),
where the group operation is deduced from comultiplication

Z[[t]]→ Z[[t]]⊗̂Z[[u]] ≃ Z[[t, u]], t 7→ t+ u,

and the identity section from the counit map

Z[[t]]→ Z, t 7→ 0.

The associated functor of points sends a ringR to the additive group of its nilpotents

Ĝa(R) = Nil(R).

diffsch-Ga-action Fact 4.11 (Bardavid,
bardavid
[3, 8.3.1]). There is bijective correspondence between formal

group actions of Ĝa on a scheme X and systems of Hasse-Schmidt derivations on
its structure sheaf OX .

In particular, differential schemes in characteristic 0 are precisely Ĝa-actions,

δ-SchQ = (Sch/Q)
Ĝa .

Indeed, an action is a formal scheme morphism

ρ : Ĝa ×X → X

satisfying the usual axioms. It is ‘infinitesimal’ in the sense that it does not affect
the underlying topological space of X, and, at the level of structure sheaves, for U
open in X, it is given by a ‘Taylor expansion’ map

OX(U)→ O(U)[[t]], f 7→
∑
i

di(f)t
i,

where (di)i∈N is a system of Hasse-Schmidt derivations.

In characteristic 0, we have that δi =
δi

i! for a derivation δ on OX . In terms of
functors of points, the action is given by the expression

Nil(R)×Hom(Spec(R), X)−→Hom(Spec(R), X),(1)

(ϵ, (φ,φ♯)) 7−→(φ,
∑
i

φ♯ ◦ δi

i!
ϵi),(2)

where φ♯ : OX → φ∗OSpec(R), and we consider ϵ ∈ Nil(R) as a global section of
OSpec(R), and the sum is finite because ϵ is nilpotent.

4.12. Trajectories and leaves. Let (X, δX) be an S-differential scheme, where

S is a Q-scheme. Let us write G = Ĝa × S for the formal additive group scheme
considered over S, let ρ : G ×S X → X be the corresponding infinitesimal action
by δX , and write ψ = (ρ, p2) : G×S X → X ×S X.

Given a generalised point x : T → X, the corresponding action map ax is
obtained as the pullback

G×S T G×S X

X ×S T X ×S X

ax ψ

id×x
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and it is given more explicitly by ax = (ρ ◦ idG×x, p2).

orbit Definition 4.13. With above notation, the orbit of x is the scheme-theoretic image
of the action map ax,

O(x) = Im(ax),

and the reduced orbit of x is the underlying reduced closed subscheme

|O|(x) = |O(x)|.

lemma-traj Lemma 4.14. Let x ∈ X be a scheme-theoretic point, and consider the correspond-
ing morphism x̄ : Spec(κ(x)) → X. The scheme-theoretic image of the composite
morphism

tx : G×S Spec(κ(x))
ax−→ X ×S spec(κ(x))

π1−→ X

is integral, and its generic point is a leaf.

Proof. The statement is local on X, so we may assume that X = Spec(A, δ) is
affine. The morphism ax corresponds to the map

A→ κ(x)[[t]], f 7→
∑
i

α(δif)

i!
ti,

where α : A→ κ(x) is associated with x̄ and the point x corresponds to p = ker(α).
The kernel of the above map is

p♯ = {f ∈ A : δn(f) ∈ p for all n},
and Keigher has shown that p♯ is prime in

keigher-prime-diff-idl
[?, 1.5]. □

trajectory Definition 4.15. If x ∈ X is a scheme-theoretic point, we define its trajectory as
the unique leaf Traj(x) satisfying

Im(tx) = {Traj(x)},
and 4.14 shows that the definition is meaningful and agrees with the notion from
bardavid
[3].

O-vs-Traj Lemma 4.16. With the above notation, for x ∈ X, Traj(x) is the generic point of
the scheme-theoretic image of O(x) via π1, i.e.

Im(tx) = π1(O(x)).

O-under-maps Lemma 4.17. Let f : X → Y be a morphism of S-differential schemes. If x :
T → X is a generalised point, and y = f ◦ x its image in Y , then O(y) is the
scheme-theoretic image of O(x) under the morphism f × idT ,

O(y) = (f × idT )(O(x)).

Consequently, if x ∈ X is a scheme theoretic point and y = f(x), then

Traj(y) = f(Traj(x)).

Both lemmas are immediate using the familiar behaviour of scheme-theoretic
images of the composite morphism.

O-basech Lemma 4.18. With the above notation, let η′ : X → S′ be the base change of η
by a morphism S′ → S. Let x′ : T → X ′ be a generalised point of X ′, and let
x : T → X be its projection. Then

O(x′) ≃ O(x).
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Proof. By using the definition of orbits maps, we obtain a cartesian diagram

G′ ×S′ T G×S T

X ′ ×S′ T X ×S T

ax′ ax

where the horizontal arrows are isomorphisms, so we conclude that scheme-theoretic
images of the vertical arrows are isomorphic. □

O-precomp Lemma 4.19. Consider the composite x′ : T ′
t−→ T

x−→ X, where t is a free affine
morphism. Then

O(x′) ≃ O(x)×X×ST X ×S T ′.

In particular, if x ∈ X is a scheme-theoretic point, and t : Spec(L) → Spec(κ(x))
for some field L containing κ(x), then

π1(|O|(x′)) = Traj(x).

Proof. Both squares of the diagram

G×S T ′ G×S T G×S X

X ×S T ′ X ×S T X ×S Xid×t id×x

ax′ ax ψ

are cartesian, which means that ax′ is the base change of ax by the affine free
morphism id×T . The free base change formula for scheme-theoretic images holds
even in the case where morphisms are not quasi-compact by

herrero
[16, Prop. 4].

The second claim follows by taking scheme-theoretic images of the closed sub-
schemes

O(x′) O(x)

X ×S T ′ X ×S T

via first projections into X. □

4.20. Categorical scheme of leaves. The following definition is inspired by the
notion of ‘espace des feuilles grossier’ that appears in Bardavid’s thesis

bardavid
[3, 4.2] and

that of ‘quotient discret catégorique’ from Ayoub’s paper
ayoub
[?, 3.2.4], which ultimately

stems from the notion of categorial quotient familiar in algebraic geometry, see
mumford-git
[28,

0.5], for example.

def-cat-schl Definition 4.21. Let (X, δX) be an S-differential scheme. A scheme T ∈ Sch/S ,
together with a morphism of S-differential schemes η : (X, δX) → C(T ) = (T, 0)
is a categorical S-scheme of leaves, if it is a universal morphism from (X, δX)
to the functor C in the sense that any other morphism of S-differential schemes
η′ : (X, δX)→ C(T ′) = (T ′, 0) factors through η, i.e., there is a unique S-morphism
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f : T → T ′ such that η′ = C(f) ◦ η. In other words, the solid part of the diagram

(X, δX) C(T )

C(T ′)
η′

η

∃!C(f)

can be uniquely completed by a dashed arrow to a commutative diagram.

no-pi0-affine Remark 4.22. The categorical scheme of leaves need not exist for an arbitrary dif-
ferential scheme (X, δX), but when it does, it is unique up to unique isomorphism,
and we denote it

π0(X).

Remark 4.23. Given a differential ring (A, δA), it is difficult to speculate whether
π0(Spec(A, δA)) exists. Note that the scheme Spec(Const(A, δA)) only satisfies the
universal property required of a categorical scheme of leaves in the category of affine
differential schemes, but not necessarily in the category of all differential schemes.

cat-schl-pi0 Lemma 4.24. Let X ∈ PreCat(Sch/S) be the D(S)-action associated to an S-
differential scheme (X, δ), considered as a precategory. Then, the categorical scheme
of leaves of (X, δX) is isomorphic to the scheme of connected components

π0(X) = Coeq (X1 X0)
d0

d1

of X in the category Sch/S, whenever either of the objects exist. In other words,

π0(X) ≃ π0(X).

Proof. Using 2.11, we obtain that

δ-SchS((X, δX), C(T ′)) ≃ (Sch/S)
D(S)(X, η∗T ′) ≃ Sch/S(π0(X), T ′),

whenever π0(X) exists, hence π0(X) satisfies the universal property of the categorical
scheme of leaves. □

4.25. Geometric scheme of leaves.

Definition 4.26. A morphism of differential schemes

η : (X, δ)→ C(Q) = (Q, 0)

is called a geometric quotient, making Q a geometric scheme of leaves, if

(1) the topological condition: η is surjective and submersive;
(2) the orbit condition: for x, x′ ∈ X,

η(x) = η(x′) implies that

there exists a field L extending κ(x), κ(x′) with |O|(xL) = |O|(x′L),

where we write xL for the composite Spec(L)→ Spec(κ(x))
x−→ X;

(3) the sheaf condition: the sequence of quasicoherent OQ-modules

0→ OQ
η♯−→ η∗OX

η∗δX−→ η∗OX

is exact, i.e., OQ ≃ Const(η∗OX).

A morphism η as above is a Bardavid quotient (
bardavid
[3, 8.4.2]), when we replace the

orbit condition by
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(2’) the trajectory condition: for x, x′ ∈ X,

η(x) = η(x′) implies Traj(x) = Traj(x′).

We note that variants of this notion appear in
ayoub
[?, 3.2.4].

bardq-catq Fact 4.27 (
bardavid
[3, 8.4.3]). A Bardavid quotient is a categorical quotient.

geom-categ Proposition 4.28. If η(X, δ) → (Q, 0) is a geometric quotient, it is a Bardavid
quotient. Hence, a geometric scheme of leaves is a categorical scheme of leaves.

Proof. If L is a field extending κ(x) and κ(x′) such that |O|(xL) = |O|(x′L), then,
using 4.19, we obtain

Traj(x) = π1(|O|(xL)) = π1(|O|(x′L)) = Traj(x′),

hence the orbit condition implies the trajectory condition. The second statement
follows from 4.27. □

univ-quot Definition 4.29. A categorical/Bardavid/geometric quotient η : (X, δ) → (Q, 0)
is universal, if it remains such after an arbitrary base change q : Q′ → Q. A
quotient is uniform, if it is stable under any flat base change q.

4.30. Simple differential schemes.

def-simplicity Definition 4.31. An S-differential scheme (X, δX) is simple with respect to the
pseudofunctor P : Sch/S → Cat, if its categorical scheme of leaves π0(X) exists
and the coequaliser

X1 X0 π0(X)
d0

d1

η

is universal for P in the sense of 2.14, i.e., if X has a P-universal scheme of
connected components, or, if η is a categorical quotient universal with respect to
P.

CX-P Lemma 4.32. If an S-differential scheme (X, δX) is simple for P with categorical
scheme of leaves ηX : X → π0(X), the canonical functor

CX : P(π0(X)) ≃P∆(π0(X)) η∗X−→PX ≃ δ-P(X, δX)

is fully faithful, where we wrote ηX : X→∆(π0(X)) for the associated morphism of
precategories inducing the pullback of precategory actions η∗X as in 2.11.

Proof. Using 2.14, we have that the arrow in the above diagram is fully faithful, so
the composite is too. □

Remark 4.33. When P is a sub-pseudocategory of the self-indexing of Sch/S as in
4.8, we obtain that

CX(Q→ π0(X)) = (X, δX)×C(π0(X)) C(Q),

so CX agrees with the functor introduced in the classical Galois context 3.1.

qc-tor-trick Lemma 4.34. Let

0→ F1
α−→ F2

β−→ F3
γ−→ F4 → 0

an exact sequence of quasicoherent modules on a scheme Y , such that

(1) α is universally injective, and
(2) F4 is flat.
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Then, for any morphism g : Y ′ → Y , the sequence

0→ g∗F1
g∗α−→ g∗F2

g∗β−→ g∗F3
g∗γ−→ g∗F4 → 0

is exact.

Proof. Since all the assumptions and the claim are local in the Zariski topology, we
may assume that Y and Y ′ are affine, say Y = Spec(A), Y ′ = Spec(A′).

Consider the short exact sequences of A-modules

0→ F1
α→ F2 → im(β)→ 0 and 0→ im(β)→ F3

γ→ F4 → 0.

Since α is universally injective, the first sequence is universally exact, so

0→ g∗F1
g∗α−→ g∗F2 → g∗ im(β)→ 0

is exact, where g∗F = A′ ⊗A F . Applying g∗ to the second sequence yields a long
exact sequence for Tor,

· · · → TorA1 (F4, A
′)→ g∗ im(β)→ g∗F3

g∗γ−→ g∗F4 → 0.

Since F4 is a flat A-module, we have that TorA1 (F4, A
′) = 0, so we can splice the

two short exact sequence into the required one. □

univ-sh-cond Lemma 4.35. Let η : (X, δ) → (Q, 0) be a morphism of S-differential schemes,
and let η′ : X ′ → Q′ be the base change of η by a scheme morphism q : Q′ → Q.
Suppose that either

(1) η is an affine pure scheme morphism, and coker(η∗δ) is a flat module on
Q, or

(2) η is qcqs, and q is flat.

If η satisfies the sheaf condition for geometric quotients, so does η′.

Proof. If η satisfies the sheaf condition, we have an exact sequence of quasicoherent
modules on Q,

0→ OQ → η∗OX
η∗δ−→ η∗OX → coker η∗δ → 0.

If q is flat, applying q∗ yields an exact sequence. The flat base change formula
stacks-project
[30,

02KE] gives that q∗η∗OX ≃ η′∗OX′ , so we obtain that η′ also satisfies the sheaf
condition. Hence, (2) is proved.

For (1), note that purity of η implies that η♯ : OQ → η∗OX is universally
injective. Indeed, for an arbitrary q as above, purity tell us that the composite
q∗OQ → q∗η∗OX → η′∗OX′ is injective, where the last morphism is the base change
morphism. It follows that the first morphism is also injective.

Applying q∗ to the above yields an exact sequence by 4.34. Using the assumption
that η is affine, the affine base change

stacks-project
[30, 02KE] ensures q∗η∗OX ≃ η′∗OX′ , so we

obtain that η′ satisfies the sheaf condition. □

geom-universal Proposition 4.36. Let η : (X, δ)→ (Q, 0) be an fpqc geometric quotient.

(1) If η is affine and coker(η∗OX
η∗δ−→ η∗OX) is flat, then η is a universal

geometric quotient and X is simple with respect to scheme morphisms.
(2) It is a uniform geometric quotient and X is simple with respect to flat

scheme morphisms.
(3) If Q is the spectrum of a field, then η is a universal geometric quotient and

X is simple with respect to scheme morphisms.
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Proof. Since η is fpqc, it is universally submersive and surjective, so the topological
condition is stable under arbitrary base change. Using 4.18 and 4.19, we see that
the orbit condition is stable under arbitrary base change.

If η is faithfully flat, it is pure, so the stability of the sheaf condition in cases (1)
and (2) follows from the corresponding statements of 4.35.

If Q is the spectrum of a field, then any morphism q with codomain Q is flat, so
(3) is a special case of (2). □

affine-CX-remark Remark 4.37. The affine version of 4.35 reads as follows.
Let (A, δ) be a differential ring with the ring of constants k, and R be a k-algebra

such that either

(1) k → A is universally injective
stacks-project
[30, Tag 058I] and coker(δ) is a flat k-module,

or
(2) R is flat over k.

Then

Const((A, δ)⊗(k,0) (R, 0)) ≃ R.
This key condition is familiar from classical literature on differential Galois theory.

pushfwd-const-sh Lemma 4.38. If a differential scheme (X, δX) is simple with respect to Zariski
open immersions, with categorical scheme of leaves given as coequaliser from 4.31,
then it satisfies the sheaf condition for quotients,

η∗ Const(OX , δX) = Oπ0(X).

Proof. From the coequaliser diagram of schemes, we obtain a diagram of structure
sheaves

η∗OX1
η∗OX0

Oπ0(X)

η∗δ0

η∗δ1

which yields a unique morphism

Oπ0(X) → Eq(η∗δ0, η∗δ1) ≃ η∗ Eq(δ0, δ1) = η∗ Const(OX , δX).

By assumption, for every Zariski open V ↪→ π0(X), the diagram

U1 U V

with U = η−1V and U1 the pullback of V toX1, remains a coequaliser. Substituting
V = Spec(A) in the above equaliser of sheaves, we obtain a ring homomorphism

A→ Eq(OU (U) −→−→ OU1(U)).

The universal property of V being coequaliser, applied to varying affine schemes,
yields that in fact

Oπ0(X)(V ) = A ≃ Eq(OU (U) −→−→ OU1
(U) = η∗Const(OX)(V ),

for an arbitrary affine open V , whence we obtain the desired conclusion. □

our-proof Proposition 4.39. Let (X, δX) be an S-differential scheme with categorical scheme
of leaves S such that:

(1) the canonical morphism

η : X → π0(X) = S

is fpqc and universally open (for example, fppf);
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(2) for every Zariski open U in X, we have

π0(U) = η(U);

(3) the module coker(η∗δX) is flat over S.

Then (X, δX) is simple with respect to S-scheme morphisms, i.e., η is a universal
categorical quotient.

Proof. Writing X for the precategory in Sch/S associated to (X, δX), our first as-
sumption means that the diagram

X1 X0 S
d0

d1

is a coequaliser. We need to show that it is universal for S-scheme morphisms, i.e.,
that the base change

X1 ×S Q X0 ×S Q Q

X1 X0 S
d0

d1

η

q

along any S-scheme morphism Q → S remains a coequaliser. Indeed, let f :
X0 ×S Q → Y be a morphism of S-schemes that coequalises the two arrows from
X1 ×S Q. Every point p ∈ X0 ×S Q has an open affine neighbourhood Up ×Sp Qp,
where Up, Sp and Qp are open affine with η(Up) ⊆ Sp and q(Qp) ⊆ Sp such that
fp = f ↾Up×SpQp

factors through an affine open subset of Y . Since η is open, we

may assume that η(Up) = Sp.
As a base-change of a surjective morphism X0 → S, the morphism X0×SQ→ Q

is surjective, so, since Up ×Sp Qp cover X0 ×S Q, we obtain that Qp cover Q. The
morphisms d0 and d1 are identites on the underlying topological spaces of X1 and
X0, and let us write Up,1 = Up ×S S1 for the preimages of Up in X1.

By assumption,

Up,1 Up Sp

is a coequaliser, and by 4.37, we obtain that

Up,1 ×S Qi Up ×Sp Qp Qp
ηp

is a coequaliser in Aff/Sp
.

Since fp factors through an affine open in Y , there exists a unique hp : Qp → Y
such that

fp = hp ◦ ηp.
Every point in Qp∩Qp′ has an affine open neighbourhoodW which is standard open
in Qp and Qp′ , so by the same affine argument applied to Up×SW and Up′ ×SW ,
we obtain that hp ↾W= hp′ ↾W .

Hence

hp ↾Qp∩Qp′= hp′ ↾Qp∩Qp′ ,

so the hp can be glued into a morphism

h : Q→ Y

verifying the universal property of coequaliser for Q. □
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our-proof-cor Proposition 4.40. Let k be a field of characteristic 0, let S = Spec(k), and let
(X, δX) be an integral S-differential scheme whose only leaf is the generic point
(i.e., it is simple in the sense of

bardavid
[3, 4.1.1]). Then (X, δX) is simple with respect to

S-scheme morphisms.

Proof. Bardavid has shown
bardavid
[3, 4.3.6, 4.3.2] that S is the categorical scheme of

leaves of (X, δX) and that S remains the categorical scheme of leaves for any open
subscheme of X, so we may apply 4.39.

Alternatively, it is straightforward to check that η : X → S is a geometric
quotient, so universality follows from 4.36. □

This proposition shows simplicity both of classical Picard-Vessiot rings, and of
torsors associated with strongly normal extensions.

4.41. Polarised differential scheme morphisms.

def-polarised-qproj Definition 4.42. The category of polarised quasi-projective morphisms has objects

(P,LP )
p→ U,

consisting of a scheme morphism p : P → U and a p-relatively ample invertible
OP -module LP .

A morphism (f, α) between polarised quasi-projective morphisms (P,LP )
p→ U

and (Q,LQ)
q→ V is a commutative diagram

(P,LP ) (Q,LQ)

U V

(f, α)

p q

consisting of a scheme morphism f : P → Q that makes the underlying scheme
diagram commutative, together with an OP -module isomorphism α : f∗LQ → LP .

If (g, β) is another morphism from (Q,LQ)
q→ V to (R,LR)

r→W , the composite
is computed as

(g, β) ◦ (f, α) = (g ◦ f, α ◦ f∗β ◦ coherence),
where, more precisely, the OP -module isomorphism is given as the composite

(g ◦ f)∗LR ≃ f∗g∗LR
f∗β→ f∗LQ

α→ LP .

nota-polarised Notation 4.43. The category of polarised quasi-projective morphisms has a natural
codomain fibration over the category of schemes. In this subsection, we write

P : Schop/S → Cat

for the associated pseudofunctor, i.e., P(V ) is the category consisting of pairs

(Q
q→ V,L ),

where q is a morphism of finite type and L is an invertible q-ample OQ-sheaf.
We will write

S = Self(Sch/S)

for the self-indexing of the category of S-schemes over itself, and

U : P → S

for the natural forgetful functor.
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def-pol-dif Definition 4.44. The category of polarised quasi-projective differential scheme
morphisms is the fibered category

δ-P

obtained by construction 4.7.

descr-poldif Lemma 4.45. For an S-differential scheme (X, δX), the category of polarised quasi-
projective differential scheme morphisms with codomain (X, δ) is equivalent to the
category of pairs

((P, δP )
p→ (X, δX), (LP , δLP

)),

where p : (P, δP )→ (X, δX) is a morphism of S-differential schemes, and (LP , δLP
)

is an invertible (OP , δP )-module with LP relatively ample with respect to the un-
derlying scheme morphism P → X.

Proof. An object P ∈ δ-P(X, δ) = PX gives rise to a diagram

(P2,LP2) (P1,LP1) (P0,LP0)

X2 X1 X0

S2 S1 S0

where the bottom level is the precategory D(S) as in 4.5, and all the arrows in the
top and middle levels are cartesian. Hence, forgetting the polarisations, we see that
P is also an S-differential scheme, whose differential structure is given by an S1-

automorphism P1
f→ P1, which is identity on the underlying space, and it is given

by an automorphism φ : OP0 [ϵ]/(ϵ
2) → OP0 [ϵ]/(ϵ

2) associated to an S-derivation
δP on OP as in 4.5, and the action on invertible sheaves is given by an isomorphism
(f, α) : (p1, d

∗
P,0L0)→ (p1, d

∗
P,0L0), i.e., by an isomorphism

α : OP0
[ϵ]/(ϵ2) φ⊗OP0

[ϵ]/(ϵ2)L0[ϵ]/(ϵ
2)→ L0[ϵ]/(ϵ

2).

The identity section requirement yields that

α = id+ϵδα ◦ ηL,

where ηL : L0[ϵ]/(ϵ
2) → L0 is the augmentation morphism, and δα : L0 → L0

makes L0 into an (OP , δP )-module. □

coeq-desc-inv-sh Lemma 4.46. Let (X, δX) be a differential scheme which is simple with respect
to Zariski open immersions, with the categorical scheme of leaves given by the co-
equaliser

X1 X0 π0(X).
d0

d1

η

Consider invertible sheaves L and L ′ on π0(X) and an OX0
-module isomorphism

α : η∗L → η∗L ′



GALOIS THEORY OF DIFFERENTIAL SCHEMES 41

making the diagram

d∗0η
∗L d∗0η

∗L ′

d∗1η
∗L d∗1η

∗L ′

d∗0α

∼

d∗1α

∼

commutative.
Then, there exists a unique isomorphism σ : L → L ′ such that

α = η∗σ.

Proof. Let Vi constitute an open cover of π0(X) such that, for every i, L ↾Vi

and L ′ ↾Vi
are free of rank 1. Then Ui = η−1(Vi) cover X0 and η∗L ↾Ui

≃
OUi

ei, η
∗L ′ ↾Ui

≃ OUi
e′i are free rank 1, for some ei and e′i, so α ↾Ui

is given as
multiplication by some ai ∈ OX(Ui)

×.
By identifying

d∗0η
∗L ↾Ui

= OUi
[ϵ]/(ϵ2)⊗OUi

OUi
ei ≃ OUi

(1⊗ ei)⊕ OUi
(ϵ⊗ ei),

and similarly for d∗0η
∗L ′ ↾Ui

, the matrix of d∗0α ↾Ui
in the pair of bases ((1⊗ei), (ϵ⊗

ei)), ((1⊗ e′i), (ϵ⊗ e′i)) becomes (
ai 0
0 ai

)
.

In the same pair of bases, the matrix of d∗1α ↾Ui
is(

ai 0
δX(ai) ai

)
.

By the assumption that d∗0α and d∗1α agree up to coherences, we conclude that
δX(ai) = 0, i.e., by 4.38,

ai ∈ Const(OX)(Ui) = η∗ Const(OX)(Vi) ≃ Oπ0(X)(Vi),

whence it gives an isomorphism L ↾Vi
→ L ′ ↾Vi

.
By the same argument, these isomorphisms agree on the intersections Vi∩Vj and

hence glue uniquely to an isomorphism L → L ′ with the desired property. □

reflect-quasiproj-coeq Proposition 4.47. The forgetful functor

δ-P → δ-S

reflects coequalisers associated with connected components of differential schemes
which are simple with respect to Zariski open immersions.

Proof. Let (X, δX) ∈ δ-S be simple for Zariski open immersions, and let (p2, p1, p0) ∈
δ-P(X, δX) be such that, in the diagram

(P1,LP1) (P0,LP0) (Q,LQ)

X1 X0 π0(X)

(d0, δ0)

(d1, δ1)

(r, ρ)

p1 p0

we have that (r, ρ) coequalises (d0, δ0) and (d1, δ1), and the underlying diagram of
scheme morphisms is a coequaliser.
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We need to show that the diagram is a coequaliser of polarised quasi-projective
morphisms. Let (h, χ) : (P0,LP0) → (T,LT ) be an arbitrary morphism that
coequalises (d0, δ0) and (d1, δ1). Since the underlying diagram of scheme morphisms
is a coequaliser, there is a unique morphism s : Q→ T such that s ◦ r = h.

Let L = s∗LT , L ′ = LQ, and consider the isomorphism α : r∗L → r∗L ′

given as the composite

r∗s∗LT ≃ h∗LT
χ→ LP0

ρ−1

→ r∗LQ.

Conditions (h, χ) ◦ (d0, δ1) = (h, χ) ◦ (d0, δ1) and (r, ρ) ◦ (d0, δ1) = (r, ρ) ◦ (d0, δ1)
show that the diagram

d∗0h
∗LT d∗0LP0 d∗0r

∗LQ

LP1

d∗1h
∗LT d∗0LP0

d∗1r
∗LQ

d∗1χ d∗1ρ
−1

d∗0χ d∗0ρ
−1

∼

δ0

δ1

∼

commutes, so d∗0α and d∗1α agree up to coherences. By 4.46, we obtain an isomor-
phism

σ : s∗LT = L → L ′ = LQ

such that α = r∗σ, and it follows that

(s, σ) ◦ (r, ρ) = (h, χ),

so (Q,LQ) has the universal property of a coequaliser, as required. □

4.48. Differential descent.

diffl-desc Proposition 4.49. Let P : Schop/S → Cat be a pseudofunctor, and let

f : (X, δX)→ (Y, δY )

be a morphism of S-differential schemes such that

(1) the underlying morphism f0 : X → Y is a morphism of effective descent
for P;

(2) f1 = d∗0f0 : X1 → Y1 is a descent morphism for P, where d0 : S1 → S0 = S
is the source morphism of precategory D(S).

Then f is a morphism of effective descent for δ-P.

Proof. We consider the morphism of S-differential schemes as a morphism f : X→
Y of D(S)-actions, and apply 2.29, noting that the cocycle condition is superfluous
for differential schemes so we may omit the condition on f2. □

diffl-desc-qp Corollary 4.50. Let f : (X, δX)→ (Y, δY ) be a morphism of differential schemes
with codomain the spectrum of a differential field and X quasi-compact. Then
f is a morphism of effective descent for the class of differential quasi-projective
morphisms.

Proof. The underlying morphism f0 : X → Y is (trivially) fpqc because the target is
the spectrum of a field, and 2.31 show that it is effective descent for quasi-projective
scheme morphisms. Its base change f1 = d∗0f is again fpqc, hence a morphism of
descent for all scheme morphisms by

sga1
[15, VIII, 5.2]. □
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difl-qproj-desc Corollary 4.51. Let f : (X, δX)→ (Y, δY ) be a morphism of differential schemes
whose underlying scheme morphism is fpqc. Then f is a morphism of effective
descent for the class of differential polarised quasi-projective morphisms.

Proof. The underlying scheme morphism f0 : X → Y is fpqc, so of effective descent
for polarised quasi-projective morphisms by

sga1
[15, VIII, 7.8], and the same holds for

f1 as the base change of f0. □

5. Affine Picard-Vessiot theory
s:aff-PVpv-classical

5.1. Picard-Vessiot Galois theory for differential field extensions. In this
section, we follow the Hopf-theoretic approach to Picard-Vessiot theory explained
in

amano-masuoka-takeuchi
[1].

Definition 5.2. An extension L/K of differential fields is Picard-Vessiot, if

(1) the extension L contains no new constants, i.e., L0 = K0, and we write k
for the common field of constants;

(2) there exists a differential K-subalgebra A of L such that Frac(A) = L and

H = (A⊗K A)0

generates the left A-module A⊗K A in the sense that

(A⊗K K)H = A⊗K A.

Such an A is called a Picard-Vessiot ring for the extension L/K.

fact-pvring Fact 5.3. In the situation from the above definition, we have the following.

(1) A is unique;
(2) H is a Hopf algebra;
(3) there is a comodule structure θ : A→ A⊗k H such that

AcoH = {a ∈ A : θ(a) = a⊗ 1} = K,

and

A⊗K A ≃ A⊗(k,0) (H, 0).selfsplittingselfsplitting (†)

(4) The linear algebraic group G = GalPV(L/K) = Spec(H) over k is called
the Picard-Vessiot Galois group of L/K and we have that

G(k) ≃ Autδ-Rng(L/K).

class-pv-corr Fact 5.4 (Classical Picard-Vessiot Galois correspondence). Let L/K be a Picard-
Vessiot extension.

There is a one-to-one correspondence between intermediate differential field ex-
tensions and closed subgroups of the linear algebraic group GalPV(L/K) given by

M 7→ GalPV(L/M).

Moreover, an intermediate field M in L/K is Picard-Vessiot over K if and only if

GalPV(L/M) is normal in GalPV(L/K). In this case, we have that

GalPV(M/K) ≃ GalPV(L/K)/GalPV(L/M).
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pv-janelidze
5.5. Janelidze’s categorical framework for Picard-Vessiot theory.

affine-pv Definition 5.6. In
janelidze-pv
[17], Janelidze makes the following choices for the classical

categorical setup as in 3.1.

(1) A = δ-Aff = δ-Rngop, the category of affine differential schemes;
(2) X = Aff = Rngop, the category of affine schemes;
(3) S = Constop is the functor of constants, i.e., S(Spec(A, δ)) = Spec(Const(A, δ)),

often written as S(X) = X0;
(4) C(Spec(R)) = Spec(R, 0) transforms a ring into a differential ring with a

trivial derivation 0.

Remark 5.7. (1) Given X ∈ A , the functor CX : X/X0
→ A/X is given by

CX(Q→ X0) = X ×C(X0) C(Q) = (X, δ)×(X0,0) (Q, 0).

(2) An object P
p→ Y in A/Y is split by a morphism X

f→ Y if the natural
morphism f∗p→ CXSX(f∗p) is an isomorphism, i.e., if

X ×Y P ≃ X ×(X0,0) ((X ×Y P )0, 0).

janelidze-affine Theorem 5.8 (
janelidze-pv
[17]). Let A be the Picard-Vessiot ring for a differential field ex-

tension L/K, and let

f = Spec(K → A) : X = Spec(A)→ Y = Spec(K)

be the associated morphism in A .
Then f is a morphism of Galois descent, the categorical Galois groupoid agrees

with the Picard-Vessiot Galois group,

G = Gal[f ] = GalPV(L/K),

and X is a G-torsor over Y in the sense that

X ×Y X ≃ X ×(X0,0) (G, 0).

There is an equivalence of categories

SplitY [f ] ≃ [G,X ]

between the category of objects P
p→ Y in A/Y split by f , in the sense that

X ×Y P = f∗(p) ≃ CX(q) = X ×X0
Q

for some Q
q→ X0 in X/X0

, and the category of G-actions in X .

Proof. (1) The morphism f is faithfully flat (given as a spectrum of an algebra
over a field) and hence it is a morphism of effective descent for affine mor-
phisms in the sense of algebraic geometry. Using Benabou-Roubaud

benabou-roubaud
[5], we

obtain that the pullback functor f∗ is monadic.
(2) Using 4.37, the counit SXCX → id is an isomorphism, or, equivalently, CX

is fully faithful.
(3) The morphism f is self-split by the property † from 5.3.
Categorical Galois theory stipulates that the object of morphisms of the groupoid

Gal[f ] is

G = Gal[f ]1 = S(f∗f) = (X ×Y X)0 = Spec((A⊗K A)0) = Spec(H),
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while the object of objects

Gal[f ]0 = S(X) = X0 = Spec(k)

is a point, so we obtain a linear algebraic group G over k, exactly as in the Picard-
Vessiot case. The torsor equation is precisely the self-splitting of f , written in terms
of G, and the equivalence of categories follows from categorical Galois theory 3.1
specialised to the framework 5.6. □

effective-alg-subgp Fact 5.9 (Algebraic group quotients and effective subgroups). Let H → G be a
monomorphism/closed immersion of algebraic groups over a field k. Combining
milne
[27, 5.24, 5.28, 8.42–8.44, B.37, B.38], or, by using

sga3.1
[12, Exposé V], we obtain:

(1) G is quasi-projective;
(2) the quotient G/H is representable by a quasi-projective scheme over k;
(3) the quotient morphism G→ G/H is faithfully flat;
(4) we have

G×H ≃ G×G/H G.

We deduce that all closed subgroups of an algebraic group over a field k are effective
in the category of schemes with quasi-projective morphisms.

In the category of affine schemes, a closed subgroup H of an affine algebraic
group G is effective if and only if G/H is affine. If H is a normal closed subgroup,
then it is effective (

milne
[27, 5.29]).

affine-pv-corr Proposition 5.10 (Affine Picard-Vessiot correspondence). With assumptions of 5.8,
there is a one-to-one correspondence between split affine quotients of f : X → Y
and effective subgroups of the linear algebraic group G = Gal[f ] which takes

X

P

Y

f

p

to

Gal[X → P ].

Conversely, if G′ is an effective subgroup in the sense that it is a closed subgroup
such that the coset space G/G′ has a structure of an affine scheme (5.9), it corre-
sponds to the quotient

X/G′,

which is f -split by the scheme G/G′.
Moreover, this correspondence restricts to a one-to-one correspondence between

split quotients P such that P → Y is Picard-Vessiot, and closed normal subgroups
of G. In this case,

Gal[P → Y ] ≃ Gal[X → Y ]/Gal[X → P ].

Proof. The statement is a direct consequence of 5.8 and 3.4. □

Remark 5.11. (1) The equivalence of categories form of Picard-Vessiot theory
from 5.8 is new and as of yet unexplored in differential algebra.
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(2) The affine Galois correspondence from 5.10 does not fully recover the clas-
sical Picard-Vessiot Galois correspondence 5.4 because it only refers to ef-
fective subgroups of the Galois group, while the classical correspondence is
for all closed subgroups. The ‘moreover’ clause does recover the correspon-
dence for Picard-Vessiot quotients and normal groups from

maurischat
[26, 8.1].

6. Categorical Galois theory for differential schemes
s:sat-gal-dif

6.1. Indexed framework for scheme-theoretic Picard-Vessiot theory.

sch-pv-setup Definition 6.2. The indexed framework for pre-Picard-Vessiot differential Galois
theory consists of the following choices for objects needed to apply 3.6.

(1) Let S be a base scheme, and let X = Sch/S .
(2) Let A be the category of S-differential schemes that have a categorical

scheme of leaves. By this choice, we have a ‘categorical scheme of leaves’
functor

π0 : A →X .

(3) Let P : X op → Cat be a pseudofunctor, which yields a pseudofunctor
δ-P : A op → Cat by 4.7.

(4) Let C = CP : P ◦ π0 ⇒ δ-P be the pseudo-natural transformation whose
(Z, δZ)-component is the canonical functor

CZ : P(π0(Z, δZ))→ δ-P(Z, δZ)

from 4.32.

For Picard-Vessiot differential Galois theory, we choose the following additional
structure.

(5) Let S : X op → Cat be a full sub-pseudofunctor of the self-indexing
Self(Sch/S) of the category of S-schemes over itself, so that, for an S-scheme
Z, S (Z) is a full subcategory of Sch/Z . It gives rise to pseudofunctor
δ-S : A op → Cat.

(6) Let CS : S ◦π0 ⇒ δ-P be the pseudo-natural transformation correspond-
ing to S .

(7) Let U : P ⇒ S be a faithful pseudo-natural transformation. It gives rise
to a morphism of fibrations, taking cartesian morphisms to cartesian, hence
we obtain a pseudo-natural transformation δ-U : δ-P ⇒ δ-S such that the
diagram

P ◦ π0 δ-P

S ◦ π0 δ-S

CP

U δ-U

CS

commutes.
(8) We require that δ-U reflects (coequalisers associated with) S -universal

connected components, i.e., if P ∈ δ-P(X, δX) for some (X, δX) ∈ A , and
we have a diagram

P1 P0 Q.
d0

d1

r
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with r ◦ d0 = r ◦ d1, which U maps onto an S -universal coequaliser

UP1 UP0 π0(δ-U(P ))

X1 X0 π0(X)

associated to the S -simple differential scheme δ-U(P ), then the original
diagram was already a coequaliser.

Remark 6.3. In view of 4.22, the above setup with the functor π0 and the pseud-
ofunctor C is not an extension of the adjunction ()0 ⊣ C we used in 5.6, given
that the functor ()0 on affine differential schemes does not extend to a functor on
differential schemes.

Remark 6.4. The category

SplitC(f)

consists of objects P ∈ δ-P(Y ) such that, for some Q ∈P(S(X)),

f∗P ≃ CX(Q).

def-pre-pv Definition 6.5. A morphism f : (X, δX) → (Y, δY ) of S-differential schemes is
pre-Picard-Vessiot with respect to U : P ⇒ S provided:

(0) f is a morphism in A , i.e., (X, δX) and (Y, δY ) have categorical schemes of
leaves over S;

(1) f is a morphism of effective descent for δ-P;
(2) X, X ×Y X and X ×Y X ×Y X are simple for S .

We say that f is pre-Picard-Vessiot with respect to P, if it is so with respect to
id : P ⇒P.

def-pv Definition 6.6. A morphism f : (X, δX) → (Y, δY ) of S-differential schemes is
Picard-Vessiot with respect to U : P ⇒ S provided:

(0) f is a morphism in A , i.e., (X, δX) and (Y, δY ) have categorical schemes of
leaves over S;

(1) f is a morphism of effective descent for δ-P;
(2) X is simple for S ;
(3) f is auto-split with respect to S , i.e., f ∈ SplitCS (f).

If P is already a sub-pseudofunctor of the self-indexing of Sch/S , we say that f
is Picard-Vessiot with respect to P, if it is such with respect to id : P ⇒P.

pv-for-P Remark 6.7. Amorphism f : (X, δX)→ (Y, δY ) in A is Picard-Vessiot with respect
to P provided:

(1) f is a morphism of effective descent for δ-P;
(2) X is simple for P;
(3) f is auto-split, i.e., f ∈ SplitC(f).

properties-pv Lemma 6.8. (1) If (X, δX) is simple for S , then it is simple for P.
(2) Given an S-differential scheme (Y, δY ), the functor δ-UY restricts to

SplitCP (f)→ SplitCS (f).
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Proof. For the first claim, suppose (X, δX) is simple with respect to S , and let
Q ∈P(π0(X)). Let P = CP

X (Q) and consider the associated diagram

P1 P0 Q.
d0

d1

r

Since (X, δX) is simple with respect to S , the analogous diagram for δ-U(CP
X (Q)) =

CS
X (UQ) is an S -universal coequaliser and π0(C

S
X (UQ) = UQ. Using the fact

that δ-U reflects connected components, we deduce that the original diagram is a
coequaliser and π0(P ) = Q.

The second claim follows directly from the fact that U preserves cartesian mor-
phisms. □

PV-pre-PV Lemma 6.9. If f is a Picard-Vessiot morphism of differential schemes with respect
to U : P ⇒ S , then f is pre-Picard-Vessiot with respect to U .

Proof. Writing G0 = π0(X), since f is auto-split with respect to CS , for some
G1 ∈ S (G0),

X ×Y X ≃ CS
X (G1) = X ×C(G0) C(G1).

By the definition of simplicity using universal coequalisers, any object in the essen-
tial image of CS

X is automatically simple for S , whence X ×Y X is simple for S
and we have π0(X ×Y X) ≃ G1. Moreover,

X ×Y X ×Y X ≃ (X ×Y X)×X (X ×Y X)

≃ (C(G1)×C(G0) X)×X (X ×C(G0) C(G1)) ≃ X ×C(X0) C(G1 ×G0 G1)

≃ CS
X (G1 ×G0 G1),

whence X ×Y X ×Y X is also simple for S with π0(X ×Y X ×Y X) ≃ G1 ×G0
G1,

as required. □

galprecatdef Remark 6.10. The assumption that f is pre-Picard-Vessiot for P ensures that the
kernel-pair groupoid

Gf : X ×Y X ×Y X X ×Y X X

π01

π02

π12

π0

∆

π1

is a category in A , and that the Galois precategory

Gal[f ] = π0(Gf )

exists as a precategory in X .
If f is Picard-Vessiot, then G[f ] is an internal category (actually a groupoid

without the inversion of arrows named) in X , by the argument in 6.9.

scheme-dif-Galois Theorem 6.11. A pre-Picard-Vessiot morphism f for P induces an equivalence
of categories

SplitC(f) ≃PGal[f ]

between the category of objects of δ-P(Y ) C-split by f and the category of P-
actions of the precategory Gal[f ].

Moreover, if f is Picard-Vessiot for U : P ⇒ S , the latter becomes the category
of P-actions of the groupoid Gal[f ].
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Proof. When f is pre-Picard-Vessiot, 6.10 ensures that Gf gives a precategorical
decomposition of f in A , and that the Galois precategory Gal[f ] is well-defined in
X . By assumption, f is of effective descent for Gf .

By the assumption on simplicity of X, X ×Y X, X ×Y X ×Y X and 4.32, we get
that the functors CX , CX×YX , CX×YX×YX are fully faithful.

Hence, all the assumptions of 3.6 are satisfied. When f is Picard-Vessiot, it is
also pre-Picard-Vessiot by 6.9.

Therefore, in both cases we get the desired equivalence involving actions of the
precategory Gal[f ], which happens to be a groupoid in the Picard-Vessiot case, as
observed in 6.10. □

6.12. Specialisation of the Galois precategory.

special-gal Proposition 6.13. Suppose f : X → Y is a pre-Picard-Vessiot morphism of dif-
ferential schemes with respect to U : P ⇒ S , where S is a class of morphisms
stable under base change, and let q : Q → π0(Y ) be a morphism in S . Then
q∗(f) = fQ : XQ → YQ is pre-Picard-Vessiot and its Galois precategory is

Gal[q∗(f)] ≃ q∗Gal[f ] = Gal[f ]×π0(Y ) Q.

Moreover, if f is Picard-Vessiot for U , so is fQ, and the same specialisation formula
holds for Galois groupoids.

Proof. Assuming that f is pre-Picard-Vessiot, fQ is an effective descent morphism
for δ-P as a base change of an effective descent morphism f .

Writing X2 = X ×Y X and X3 = X ×Y X ×Y X, the Galois precategory of f is
Gal[f ] = (G2, G1, G0) withGi = π0(X

i+1). By definingQi = Gi×π0(Y )Q = q∗(Gi),
we obtain a diagram

X3 X2 X Y

X3
Q X2

Q XQ YQ

G2 G1 G0 π0(Y )

Q2 Q1 Q0 Q

where all the squares but those on the front and the rear face are cartesian. Since
Xi is simple for S , so is Xi

Q ≃ (XQ)
i and

π0((XQ)
i+1) = π0(X

i+1 ×Gi Qi) = π0(X
i+1 ×π0(Xi+1) Qi) ≃ Qi,

whence we obtain that Gal[fQ] = (Q2, Q1, Q0), proving the specialisation formula.
If f is Picard-Vessiot, then the middle rear square is cartesian, i.e., X ×Y X ≃

X ×G0
G1, so the middle front square is too, and we obtain

XQ ×YQ
XQ ≃ X2

Q ≃ XQ ×Q0
Q1,

so fQ is auto-split and thus Picard-Vessiot. □
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7. Applications

7.1. Quasi-projective Picard-Vessiot theory.

qproj-gal-th Theorem 7.2. Let (K, δ) be a differential field of characteristic 0 with constants
k, and write S = Spec(k). Let f : X → Y = Spec(K, δ) be a morphism of S-
differential schemes such that

(1) X is integral quasi-projective over Y and its only leaf is the generic point;
(2) f is auto-split, witnessed by a quasi-projective k-scheme G,

X ×Y X ≃ X ×C(S) C(G).

Then f is Picard-Vessiot, Gal[f ] is an S-algebraic group isomorphic to G,
and there is an equivalence of categories

{quasi-projective S-differential morphisms to Y split by f}
≃ {quasi-projective S-scheme actions of G}

Proof. We follow the template of 6.11 for P the fibred category of quasi-projective
morphisms. By assumption (1) and 4.40, X is simple with categorical scheme of
leaves S. By 4.51, f is of effective descent for δ-P. Thus, X is Picard-Vessiot and
6.11 gives the desired equivalence. □

qproj-pv-corr Corollary 7.3 (Quasi-projective differential Galois correspondence). With notation
of 7.2, there is an order-reversing one-to-one correspondence between split S-differential
quasi-projective fpqc quotients of f : X → Y in A and closed subgroups of the al-
gebraic group G = Gal[f ] which takes

X

P

Y

f

p

to

Gal[X → P ].

Conversely, a closed subgroup G′ corresponds to the quotient

X/G′,

which is f -split by the quasi-projective scheme G/G′.
Moreover, this correspondence restricts to a one-to-one correspondence between

split fpqc quotients P such that P → Y is Picard-Vessiot, and closed normal sub-
groups of G. In this case,

Gal[P → Y ] ≃ Gal[X → Y ]/Gal[X → P ].

Proof. The claimed correspondence is more specific than a claim that could be
extracted from 3.4, so we provide an explicit proof following an analogous strategy.

If h : X → P is f -split by g : G→ Q, and h is fpqc, then f∗(h) is fpqc, hence an
universal effective epimorphism by

stacks-project
[30, Tag 023P]. Since SX preserves colimits as

a left adjoint, it follows that g = U(h) = SXf
∗(h) is a regular epimorphism, hence

again an effective epimorphism in the presence of pullbacks. Since g corresponds
to a quotient of an algebraic group, it is fpqc again by 5.9.
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Conversely, if G′ ≤ G is a closed subgroup, then, by 5.9, g : G → G/G′ = Q is
fpqc. The quotient h : X → P corresponding to it satisfies f∗(h) ≃ CX(g), whose
underlying scheme morphis is fpqc since CX acts as base change on g. Since f is
fpqc, using the fact

stacks-project
[30, Tag 02YJ] that the properties of being ‘faithfully flat and

quasi-compact’ are local in the fpqc topology, it follows that h is fpqc itself. □

Remark 7.4. The theory above shows that even in linear Picard-Vessiot theory,
with X = (A, δA) the spectrum of a Picard-Vessiot ring over a differential field
(K, δ), in order to extend the correspondence 5.10 to all closed subgroups od the
Galois group, we are forced to consider split quasi-projective quotients of X.

Remark 7.5. The above theory applies to strongly normal differential Galois theory
of

kolchin-sn
[19].

7.6. Polarised quasi-projective differential Galois theory.

polarised-pv-thm Theorem 7.7. Let f : (X, δX)→ (Y, δY ) be a morphism of S-differential schemes
such that, with notation 4.43,

(1) the underlying S-scheme morphism X → Y is fpqc;
(2) (X, δX) is simple for S with scheme of leaves G0;
(3) there is an S-morphism G1 → G0 such that

(X, δX)×(Y,δY ) (X, δX) ≃ (X, δX)×(G0,0) (G1, 0).

Then f is Picard-Vessiot for U : P ⇒ S , Gal[f ] is the groupoid (G1
−→−→ G0) and we

have an equivalence between the category of quasi-projective polarised S-differential
morphisms (P,LP ) → Y split by f and the category of quasi-projective polarised
actions (Q,LQ)→ G0 of Gal[f ].

Proof. Using 4.51, we obtain that f is of effective descent for δ-P. By 4.47, the
forgetful functor δ-U reflects S -universal categorical schemes of leaves. Hence, f
is indeed Picard-Vessiot for U and we can apply the template Theorem 6.11. □

s:elliptic
7.8. A parametrised family of strongly normal extensions. This example
is inspired by Kolchin’s example of Weierstrassian extensions of differential fields
kolchin-sn
[19, III.6], with more explicit calculations in

kovacic-tams03, kovacic-tams06
[20, 21] where the authors consider the

strongly normal extension associated to a vector field on an elliptic curve. We are
able to treat families of elliptic curves over a base scheme as parametrised families
of strongly normal extensions.

We consider an elliptic curve scheme E → S with a globally defined invariant
differential ωE ∈ Ω1

E/S (the reader may wish to think of the Weierstrass family of

elliptic curves

E → S = SpecQ[u, v, (4u3 + 27v2)−1]

obtained by projectivising the naive equation y2 = x3 + ux+ v).
Let p : (Y, δY )→ (S, 0) be a universal Bardavid quotient, and let

X = Y ×S E.

It sheaf of differentials is

ΩX/S ≃ π∗1ΩY/S ⊕ π∗2ΩE/S = π∗1ΩY/S ⊕ ⟨ωX⟩,

for some ωX .
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We endow X with a differential scheme structure over (Y, δY ) by stipulating

ωX 7→ α ∈ Γ(X,O×X),

and we write
f : (X, δX)→ (Y, δY )

for the corresponding morphism of S-differential schemes.
We claim that the morphism

η = p ◦ f : (X, δX)→ (S, 0)

is a universal Bardavid quotient.

(1) Since f is proper smooth surjective, it is faithfully flat and therefore uni-
versally submersive surjective, and p is such by assumption, hence η is
(universally) submersive and surjective.

(2) For the trajectory condition, we need to show that η(x) = η(x′) im-
plies Traj(x) = Traj(x′). Assuming η(x) = η(x′) implies that p(f(x)) =
p(f(x′)), so by the orbit condition on p, we obtain that Traj(f(x)) =
Traj(f(x′)). It suffices to show that the restriction fδ : Xδ → Y δ of f
to leaves is injective. Indeed, given a leaf y ∈ Y δ, f−1(y) is the underlying
space of Xy = X ×Y Spec(κ(y)), which is an elliptic curve over a differen-
tial field κ(y) endowed with a non-vanishing vector field associated with a
logarithmic differential equation lδ(x) = α(y), and

kolchin-sn,kovacic-tams03
[19, 20] prove that Xy

is classically simple in the sense that its only leaf is its generic point, i.e.,
Xδ
y is a singleton.

(3) For the sheaf condition, using the fact that f is proper with geometrically
connected fibres, we obtain that

Const(η∗OX) = Const(p∗(f∗OX)) ≃ Const(p∗OY ) ≃ OS .

The universality of the quotient is automatic because any base change S′ → S
results in the same situation that we started with.

Thus, we have that π0(X) = π0(Y ) = S, X is simple with respect to arbitrary
scheme morphisms and we claim that f is self-split, i.e.,

X ×Y X ≃ X ×(S,0) (E, 0).

The underlying scheme isomorphism is

ψ : X×SE ≃ Y ×SE×SE
id×(µ,π1)−→ Y ×SE×SE ≃ (Y ×SE)×Y (Y ×SE) ≃ X×Y X,

where µ : E ×S E → E is the group operation on E.
In order to show that ψ is a morphism of differential schemes, it suffices to verify

that the diagram

ψ∗ΩX×YX/S ΩX×SE/S

OX×SE

commutes. Bearing in mind that both ΩX×YX/S and ΩX×SE/S are isomorphic to

ΩY×SE×SE/S ≃ π
∗
1ΩY/S ⊕ π∗2ΩE/S ⊕ π∗3ΩE/S ,

we name the generators as

ψ∗ΩX×YX/S = π∗1ΩY/S ⊕ ⟨ωX,1, ωX,2⟩, ΩX×SE/S = π∗1ΩY/S ⊕ ⟨ωX , ωE⟩.
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The horizontal arrow acts as identity on π∗1ΩY/S and maps

ωX,1 7→ ωX + ωE , ωX,2 7→ ωX ,

while the arrows to OX×SE map

ωX,1 7→ c, ωX,2 7→ c, ωX 7→ c, ωE 7→ 0,

so the diagram commutes. These considerations follow formally from properties of
invariant differentials and do not require explicit calculations in coordinates as in
kolchin-sn,kovacic-tams03
[19, 20].

It follows that the Galois groupoid is

Gal[f ] = E −→−→ S.

Note that 6.13 explains the variation in parameters from S. If s ∈ S(L) for a field
L, then

Gal[fs] ≃ Gal[f ]×S Spec(L) ≃ (E −→−→ S)×S Spec(L) ≃ Es −→−→ Spec(L) ≃ Es,

considered as an algebraic group over L. Hence, our Galois groupoid specialises
to the classical differential Galois groups of strongly normal extensions associated
to logarithmic-differential equations on elliptic curves fs : Xs → Ys uniformly in
parameter s.

s:airy
7.9. Galois groupoid of the Airy equation. On the example of the Airy equa-
tion

y′′ = xy,

we show that Galois theory of linear differential equations can be done in a more
canonical way through a Galois groupoid, rather than following the classical route
of constructing a Picard-Vessiot extension in a non-canonical way in order to obtain
a Galois group.

Let S = Spec(k) be the spectrum of a field of characteristic 0, let Y = Spec k[x]
and X = Spec(A) with A = k[x, u,det(u)−1], a variant of the ‘full universal solution
algebra’ Ā = k(x)[u,det(u)−1] of the Airy equation. We make the projection

f : X = Y ×S GL2 = Spec(A)→ Y

into a morphism of differential S-schemes by endowing X with a vector field

∂

∂x
+ u21

∂

∂u11
+ u22

∂

∂u12
+ xu11

∂

∂u21
+ xu12

∂

∂u22
,

which also determines the differential structure on Y . In terms of differentials,

ΩX/S = f∗ΩY/S ⊕ π∗2ΩGL2 /S = ⟨dx, ω11, ω12, ω21, ω22⟩,

where ω = du · u−1 is the invariant differential on GL2, the S-differential scheme
structure on X and Y is given by assigning

dx 7→ 1, ω 7→
(
0 1
x 0

)
.

We claim that the composite

η : X
π2−→ GL2

det−→ Gm
is a geometric quotient.

(1) Since η is fpqc, it is universally submersive surjective.
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(2) Given that we are in the affine setting, the sheaf condition follows from the
folklore fact that

Const(A) = k[det(u),det(u)−1],

where A = k[x, u,det(u)−1], i.e., the ‘only’ algebraic relation that a funda-
mental set of solutions of the Airy equation satisfies is that its Wronskian
is a constant.

(3) For the orbit condition, let p ∈ X(L) be a point with values in a field
L, corresponding to a homomorphism α : A → L. The orbit map ap is
associated with an L-homomorphism

A⊗k L = L[x, u,det(u)−1]→ L[[t]], f 7→
∑
n

α(δnf)

n!
tn.

An explicit calculation shows that

x 7−→ α(x) + t,

u 7−→
(
a(α(x) + t) b(α(x) + t)
a′(α(x) + t) b′(α(x) + t)

)
α(u),

where a and b are the fundamental set of solutions of the Airy equation
in L[[t]] (with respect to the variable t) with Wronskian 1. By the same
reasoning as above, we obtain that the kernel of this map is (det(u) −
det(α(u)). In other words, we have that

η(p) = η(p′) if and only if O(p) = O(p′).

Next, we claim that

coker(η∗OX
η∗δX−→ η∗OX)

is a flat module on Gm. Since everything is affine, we need to show that M =

coker(A
δA−→ A) is a flat k[z, z−1]-module, via the morphism associated to η,

k[z, z−1]→ A, z 7→ ∆ = det(u).
By faithfully flat descent via k → k̄, we may assume that k is algebraically

closed.
Since k[z, z−1] is a 1-dimensional regular ring, it is enough to show that M is

torsion-free. In this case, this means that, if f(∆)m ∈ im(δ) for some m ∈ A, and
f ∈ k[z, z−1], then already m ∈ im(δ). More explicitly, if we have f(∆)m = δ(g),
then there must exist an h ∈ A such that m = δ(h).

By clearing denominators using the fact that ∆ is a constant, we may assume
that f ∈ k[z]. Since k is algebraically closed, the polynomial f factors into linear
factors, hence, by an inductive argument, we reduce to the case f(z) = z − λ, for
some λ ∈ k. The above condition reduces to showing that

Const(A/(∆− λ)) = k.

By the above arguments, we know that (∆ − λ) is a maximal δ-ideal in A and
Ā, and that

A/(∆− λ) ↪→ Ā/(∆− λ),
where the latter is a Picard-Vessiot ring over k(x) by construction

magid-lect
[25, 3.4, 4.29],

so

k ⊆ Const(A/(∆− λ)) ⊆ Const(Ā/(∆− λ)) = k,

as required.
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Moreover, since η is fpqc, using 4.36, we obtain that X is simple with respect to
arbitrary scheme morphisms with

π0(X) = G0 = Gm.

We claim that f : X → Y is self-split, i.e., there is a natural quotient morphism

η1 : X ×Y X ≃ Y ×S GL2×S GL2 → G1 = (GL2×S GL2)/SL2 .

that yields an isomorphism of differential schemes

X ×Y X ≃ X ×(G0,0) (G1, 0).

Indeed, for the last isomorphism in the definition of η1, given a pair of invertible
matrices (u, v), consider the augmented matrix(

u11 u12 v11 v12
u21 u22 v21 v22

)
and send it to the the homogeneous sextuple of determinants pij of its 2×2 minors
for 1 ≤ i < j ≤ 4, considered as the Plücker coordinates of the Grassmanian
Gr[2, 4], satisfying the familiar relation p12p34−p13p24+p14p23 = 0. The definition
is SL2 invariant, so it factors through (GL2×S GL2)/ SL2. Using the derivation on
X ×Y X, we explicitly verify that all the pij are constants, so η1 is a differential
scheme morphism to (Gr[2, 4], 0).

The torsor isomorphism

ψ : X ×S (GL2×S GL2)/SL2 ≃ Y ×S GL2×S(GL2×S GL2)/SL2

−→ Y ×S GL2×S GL2 ≃ X ×Y X,

takes a tuple (y, u, [u1, v1]) and maps it to (y, u, sv1), where s ∈ SL2 is the unique
matrix such that u = su1. Its inverse is given as (πY×SGL2), η1), i.e., in coordinates,
by (y, u, v) 7→ (y, u, [u, v]).

In order to show that ψ is a morphism of differential schemes, it suffices to verify
that the diagram

ψ∗ΩX×YX/S ΩX×G0
G1/S

OX×G0
G1

commutes. Using the fact that both ΩX×YX/S and ΩX×G0
G1/S are isomorphic to

ΩY×SGL2×S GL2 /S ≃ π
∗
1ΩY/S ⊕ π∗2ΩGL2 /S ⊕ π

∗
3ΩGL2/S ,

we can name the generators, thought of as pullbacks of the invariant differentials
on GL2, as

ψ∗ΩX×YX/S = ⟨dx, ω1, ω2⟩, ΩX×G0
G1/S = ⟨dx, ω, ω0⟩,

so that the horizontal arrow maps

dx 7→ dx, ω1 7→ ω, ω2 7→ ω + ω0,

while the arrows to OX×SE map

ω1 7→
(
0 1
x 0

)
, ω2 7→

(
0 1
x 0

)
, ω 7→

(
0 1
x 0

)
, ω0 7→ 0,

so the diagram commutes.
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From the self-splitting, we conclude that

π0(X ×Y X) ≃ G1,

and our Galois theory gives the Galois groupoid

Gal[f ] = G1
−→−→ G0

= (GL2×S GL2)/ SL2
−→−→ GL2 / SL2 = Gm.

Intuitively, at least in the case where k is algebraically closed, the points of
the object of objects G0 correspond to a choice of a Picard-Vessiot extension with
∆ = λ, and the object of morphisms G1 encodes the isomorphisms between different
choices of λ. The stabiliser of a chosen object is its usual Picard-Vessiot Galois
group SL2.

The Malgrange groupoid in this example is given by
casale-blazquez
[7, 2.8] as

A1 ×S A1 ×S SL2
−→−→ A1.

While both groupoids show that the symmetries of the Airy equation are governed
by the group SL2, they appear to do so in different ways.
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sga3.1 [13] M. Demazure and A. Grothendieck, editors. Schémas en groupes. I: Propriétés générales des
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